
Lecture 12.4: GenAI: Generative Adversarial
Networks

The Art of Adversarial Training

Heman Shakeri



Generative Adversarial Net

The Paper That Started It All

“Generative Adversarial Nets” (2014) Ian Goodfellow et al.
https://arxiv.org/abs/1406.2661
Accepted at NIPS 2014

Train two networks that compete against each other!
Now an old idea!! But back the Yann LeCun called GANs “the most
interesting idea in the last 10 years in ML”.
First to generate high-resolution images

https://arxiv.org/abs/1406.2661


The Adversarial Game

Two players in a zero-sum game:
Generator G

Creates fake data
Tries to fool discriminator
Learns data distribution

Discriminator D
Judges real vs fake
Tries to catch generator
Learns decision boundary

z Generator
G

Fake
G(z)

Real
x

Discriminator
D

Real?
Fake?

0?

1?



The Mathematical Objective

Minimax game:

min
G

max
D

V (D, G) = Ex∼pdata [log D(x)] + Ez∼pz [log(1 − D(G(z)))]

Breaking it down:

D(x): Discriminator’s output for real data (want → 1)
D(G(z)): Discriminator’s output for fake data (want → 0)

Discriminator maximizes:

log D(x) high when real data detected correctly
log(1 − D(G(z))) high when fake data detected correctly

Generator minimizes:

log(1 − D(G(z))) low when fooling discriminator
Equivalently: maximize log D(G(z)) (non-saturating version)



Training Algorithm: The Dance

Alternating optimization:
1 Train Discriminator (fix Generator)

• Sample real data x ∼ pdata
• Sample noise z ∼ pz , generate fake G(z)
• Update D to maximize log D(x) + log(1 − D(G(z)))

2 Train Generator (fix Discriminator)
• Sample noise z ∼ pz
• Update G to maximize log D(G(z))

Key insight: Don’t train to equilibrium! Alternate frequently
Typically: Train D for k steps, then train G for 1 step
k = 1 often works, but k = 5 common for stability



Visualizing the Training Process

Early training: Discriminator easily distinguishes real from fake

data space

density

pdata

pg (early)

D(x)

D(x) ≈ 1 (real) D(x) ≈ 0 (fake)

Discriminator’s job: Output 1 for real, 0 for fake
When D is confident, G gets strong gradient signal to improve



Nash Equilibrium: When GANs Converge
Convergence: Generator matches data distribution perfectly

data space

density

pdata

pg (converged)

D(x) = 0.5

D cannot tell real from fake!

Why D(x) = 0.5 is optimal:

When pg = pdata, every sample is equally likely to be real or fake
Discriminator has no information to distinguish them
D(x) = 0.5 everywhere means “I’m guessing randomly”
This is the Nash equilibrium — neither player can improve!



Generator Architecture

Task: Transform noise z into realistic data G(z)
For images: Use transposed convolutions (Lecture 6!)

z
100

FC
4 × 4 × 512

Reshape
4 × 4

ConvT
8 × 8

ConvT
16 × 16

ConvT
32 × 32

Image
64 × 64

stride=2
upsample

Key techniques:

Batch normalization for stability
ReLU activations (hidden), Tanh (output)
No pooling, use strided convolutions



Discriminator Architecture

Task: Classify real vs. fake D(x) ∈ [0, 1]
For images: Standard CNN classifier (Lecture 4-5!)

Image
64 × 64

Conv
32 × 32

Conv
16 × 16

Conv
8 × 8

Conv
4 × 4 FC

p
[0,1]

stride=2
downsample

Key techniques:

Leaky ReLU activations
Strided convolutions instead of pooling
Sigmoid output for binary classification



The Training Instability Problem

GANs are notoriously hard to train!
Common failure modes:

1 Mode collapse: G generates only a few types of samples
• Finds a few images that fool D, ignores diversity
• Missing entire modes of data distribution

2 Vanishing gradients: D too good too fast
• When D is perfect, G gets no gradient signal
• log(1 − D(G(z))) ≈ 0 everywhere

3 Oscillation: No convergence, just cycling
• G and D chase each other endlessly
• Never reach Nash equilibrium



Mode Collapse Illustration

Ideal: Generator captures all modes of data distribution

x

density

pdata

pg (good)

Mode collapse: Generator only captures subset

x

density

pg (collapsed)



Why Training is Hard: The Gradient Problem

Generator’s gradient:

∇θgEz[log(1 − D(G(z)))]

Problem: When D is confident (early training), gradient vanishes!

If D(G(z)) ≈ 0, then log(1 − D(G(z))) ≈ 0
Flat region → tiny gradients → slow learning

Solution: Use non-saturating loss

max
G

Ez[log D(G(z))]

Instead of minimizing probability of being fake, maximize probability of being
real!
This provides better gradients early in training when D is strong



The Balancing Act

D strong

G weak

Bad: No gradient for G

D G

Good: Balanced training

The challenge: Keep them balanced throughout training!



Improvements: DCGAN (2015)

“Deep Convolutional GAN” — architectural guidelines
Key contributions:

1 Replace pooling with strided convolutions
2 Use batch normalization (except output of G and input of D)
3 Remove fully connected hidden layers
4 Use ReLU in G (except output: Tanh)
5 Use LeakyReLU in D

Result: Much more stable training!
These became the standard architecture guidelines
DCGAN showed GANs could learn hierarchical representations
Deep networks with proper architecture work much better than shallow ones



Other Important Improvements

Spectral Normalization (2018):

Normalize weights by their spectral norm
Enforces Lipschitz constraint more elegantly
Very stable, widely adopted

Progressive Growing (2017):

Start with low resolution, gradually increase
Train 4×4, then 8×8, then 16×16, etc.
Enabled high-resolution generation (1024×1024)

StyleGAN (2018-2019):

Control generation at different scales
Learns disentangled representations
State-of-the-art quality for faces



CycleGAN: Unpaired Translation

Problem: What if we don’t have paired training data?
Can we learn horse ↔ zebra without matched pairs?
Solution: Cycle consistency!

Learn two mappings: G : X → Y and F : Y → X
Enforce F (G(x)) ≈ x and G(F (y)) ≈ y

Loss:
L = LGAN(G , DY ) + LGAN(F , DX ) + λLcyc(G , F )

Cycle consistency loss:

Lcyc = Ex[∥F (G(x)) − x∥1] + Ey[∥G(F (y)) − y∥1]

Enables amazing applications: photo ↔ painting, summer ↔ winter, etc.



GANs vs VAEs vs Diffusion

GANs VAEs Diffusion
Quality Sharp, realistic Blurry Sharp, realistic
Diversity Mode collapse risk Good coverage Excellent coverage
Training Unstable, tricky Stable, easy Stable, slower
Likelihood No explicit p(x) Bounded

log p(x)
Tractable p(x)

Speed Fast sampling Fast sampling Slow sampling
Control Good (cGAN) Good (cVAE) Excellent (guidance)

The current state (2025):

Diffusion models dominate high-quality image generation
VAEs used for compression (Stable Diffusion)
GANs still used for fast inference, specific domains



Why Diffusion Won

GANs’ Achilles Heels:

1 Training instability makes scaling difficult
2 Mode collapse hurts diversity
3 No explicit likelihood, hard to evaluate
4 Difficult to condition precisely

Diffusion’s Advantages:

1 Stable training, scales reliably
2 Excellent coverage of data distribution
3 Principled probabilistic framework
4 Natural conditioning through cross-attention
5 Superior controllability (guidance, inpainting)

The verdict: By 2022-2023, diffusion models overtook GANs
DALL-E 2, Imagen, Stable Diffusion all use diffusion, not GANs



GANs’ Lasting Impact

Despite being “dethroned,” GANs revolutionized the field:
Conceptual contributions:

Adversarial training as a principle
Learning from implicit feedback
Game-theoretic view of learning

Technical contributions:

Architectural innovations (DCGAN, StyleGAN)
Perceptual losses and adversarial losses
Image-to-image translation frameworks

Still used today:

Super-resolution (ESRGAN)
Fast inference applications
Video generation (some models)
Discriminator as loss function for other models



Practical Tips for Training GANs

If you must train a GAN:

1 Start with proven architecture (DCGAN guidelines)
2 Use appropriate learning rates (∼ 0.0002 with Adam)
3 Train discriminator more frequently (k = 5 steps)
4 Monitor both losses, look for balance
5 Use techniques from WGAN-GP or Spectral Norm
6 Generate samples frequently to check for mode collapse
7 Consider using pre-trained discriminators
8 Be patient, expect some instability

Or just use diffusion models!
Much more stable and better results in 2025


