Heman Shakeri

Generative Adversarial Net

The Paper That Started It All

“Generative Adversarial Nets” (2014) lan Goodfellow et al.
https://arxiv.org/abs/1406.2661
Accepted at NIPS 2014

m Train two networks that compete against each other!

m Now an old idea!! But back the Yann LeCun called GANs “the most
interesting idea in the last 10 years in ML".

m First to generate high-resolution images

https://arxiv.org/abs/1406.2661

The Adversarial Game

Two players in a zero-sum game:

Generator G Discriminator D
m Creates fake data m Judges real vs fake
m Tries to fool discriminator m Tries to catch generator
m Learns data distribution m Learns decision boundary

~

Generator Fake
G G(2) 0\7\

Real

Discriminator Real?
D Fake?

The Mathematical Objective
Minimax game:

minmax V(D, G) = B, lI08 Dx)] + Ex-p,[log(1 ~ D(G(2)))]

Breaking it down:

m D(x): Discriminator’s output for real data (want — 1)
m D(G(z)): Discriminator’s output for fake data (want — 0)

Discriminator maximizes:

m log D(x) high when real data detected correctly
m log(1 — D(G(z))) high when fake data detected correctly

Generator minimizes:

m log(1 — D(G(2))) low when fooling discriminator

m Equivalently: maximize log D(G(z)) (non-saturating version)

Training Algorithm: The Dance

Alternating optimization:

@ Train Discriminator (fix Generator)

® Sample real data x ~ pgata
® Sample noise z ~ p;, generate fake G(z)
® Update D to maximize log D(x) + log(1 — D(G(z)))

@ Train Generator (fix Discriminator)

® Sample noise z ~ p,
® Update G to maximize log D(G(z))

Key insight: Don't train to equilibrium! Alternate frequently
Typically: Train D for k steps, then train G for 1 step

k =1 often works, but k =5 common for stability

Visualizing the Training Process

Early training: Discriminator easily distinguishes real from fake

density

data space

D(x) ~ 1 (real) D(x) =~ 0 (fake)

Discriminator’s job: Output 1 for real, O for fake

When D is confident, G gets strong gradient signal to improve

Nash Equilibrium: When GANs Converge
Convergence: Generator matches data distribution perfectly

density

Pdata D(X) = 05
p?é\%)

D cannot tell real from fake!

data space

Why D(x) = 0.5 is optimal:

m When p; = pgata, every sample is equally likely to be real or fake
m Discriminator has no information to distinguish them

m D(x) = 0.5 everywhere means “I'm guessing randomly”

m This is the Nash equilibrium — neither player can improve!

Generator Architecture

Task: Transform noise z into realistic data G(z)

For images: Use transposed convolutions (Lecture 6!)

z FC
100 4 x 4 x 512

Key techniques:

N Reshape Ly ConvT \| ConvT \| ConvT \| Image
4x4 8x8] 16 x 16 1 32x32 164 x 64
stride=2

upsample

m Batch normalization for stability
m RelU activations (hidden), Tanh (output)

m No pooling, use strided convolutions

Discriminator Architecture

Task: Classify real vs. fake D(x) € [0, 1]
For images: Standard CNN classifier (Lecture 4-5!)

Image \| Conv \| Conv \| Conv \| Conv \ FC
64 x 64 7l 32x32 7l 16 x 16 7l 8x8 7l 4axa Y
stride=2

downsample

Key techniques:

m Leaky RelU activations
m Strided convolutions instead of pooling

m Sigmoid output for binary classification

The Training Instability Problem

GANs are notoriously hard to train!

Common failure modes:

©@ Mode collapse: G generates only a few types of samples
® Finds a few images that fool D, ignores diversity
® Missing entire modes of data distribution
@ Vanishing gradients: D too good too fast
® When D is perfect, G gets no gradient signal
® log(l — D(G(z))) = 0 everywhere
@ Oscillation: No convergence, just cycling

® G and D chase each other endlessly
® Never reach Nash equilibrium

Mode Collapse lllustration
Ideal: Generator captures all modes of data distribution
density

Pdata

Pg (good)

AWAVAN

Mode collapse: Generator only captures subset

X

density

A

pg (collapsed)

/A

Why Training is Hard: The Gradient Problem

Generator’s gradient:

Vo, E.[log(1 — D(G(2)))]

Problem: When D is confident (early training), gradient vanishes!

m If D(G(2)) =~ 0, then log(1 — D(G(z))) ~ 0

m Flat region — tiny gradients — slow learning

Solution: Use non-saturating loss
max E,[log D(G(2))]

Instead of minimizing probability of being fake, maximize probability of being
reall

This provides better gradients early in training when D is strong

The Balancing Act

D strong

\T\ € weak

Bad: No gradient for G

Good: Balanced training

The challenge: Keep them balanced throughout training!

Improvements: DCGAN (2015)

“Deep Convolutional GAN” — architectural guidelines
Key contributions:
@ Replace pooling with strided convolutions
@ Use batch normalization (except output of G and input of D)
© Remove fully connected hidden layers
@ Use RelLU in G (except output: Tanh)
@ Use LeakyRelLU in D
Result: Much more stable training!
These became the standard architecture guidelines
DCGAN showed GANs could learn hierarchical representations

Deep networks with proper architecture work much better than shallow ones

Other Important Improvements

Spectral Normalization (2018):

m Normalize weights by their spectral norm
m Enforces Lipschitz constraint more elegantly
m Very stable, widely adopted

Progressive Growing (2017):

m Start with low resolution, gradually increase
m Train 4x4, then 8x8, then 16x16, etc.
m Enabled high-resolution generation (1024 x1024)

StyleGAN (2018-2019):

m Control generation at different scales
m Learns disentangled representations

m State-of-the-art quality for faces

CycleGAN: Unpaired Translation

Problem: What if we don’t have paired training data?
Can we learn horse <+ zebra without matched pairs?

Solution: Cycle consistency!

m Learn two mappings: G: X — Y and F: Y — X
m Enforce F(G(x)) ~ x and G(F(y)) ~y

Loss:
L = Lean(G, Dy) + Lean(F. Dx) + ALcyc(G, F)

Cycle consistency loss:

Leye = Bx[[IF(G(x)) = x[l] + Ey[[|G(F(y)) — yl1]

Enables amazing applications: photo <+ painting, summer <> winter, etc.

GANs vs VAEs vs Diffusion

GANs VAEs Diffusion
Quality Sharp, realistic Blurry Sharp, realistic
Diversity Mode collapse risk Good coverage Excellent coverage
Training Unstable, tricky Stable, easy Stable, slower
Likelihood No explicit p(x) Bounded Tractable p(x)
log p(x)

Speed Fast sampling Fast sampling Slow sampling
Control Good (cGAN) Good (cVAE) Excellent (guidance)

The current state (2025):

m Diffusion models dominate high-quality image generation
m VAEs used for compression (Stable Diffusion)
m GANSs still used for fast inference, specific domains

Why Diffusion Won

GANSs’ Achilles Heels:

@ Training instability makes scaling difficult
@ Mode collapse hurts diversity

© No explicit likelihood, hard to evaluate
@ Difficult to condition precisely

Diffusion’s Advantages:

@ Stable training, scales reliably

@ Excellent coverage of data distribution

@ Principled probabilistic framework

@ Natural conditioning through cross-attention
@ Superior controllability (guidance, inpainting)

The verdict: By 2022-2023, diffusion models overtook GANs
DALL-E 2, Imagen, Stable Diffusion all use diffusion, not GANs

GANs’ Lasting Impact

Despite being “dethroned,” GANs revolutionized the field:
Conceptual contributions:
m Adversarial training as a principle

m Learning from implicit feedback
m Game-theoretic view of learning

Technical contributions:

m Architectural innovations (DCGAN, StyleGAN)
m Perceptual losses and adversarial losses

m Image-to-image translation frameworks
Still used today:

m Super-resolution (ESRGAN)
m Fast inference applications
= Video generation (some models)

m Discriminator as loss function for other models

Practical Tips for Training GANs

If you must train a GAN:

@ Start with proven architecture (DCGAN guidelines)

@ Use appropriate learning rates (~ 0.0002 with Adam)
@ Train discriminator more frequently (k = 5 steps)

@ Monitor both losses, look for balance

@ Use techniques from WGAN-GP or Spectral Norm

@ Generate samples frequently to check for mode collapse
@ Consider using pre-trained discriminators

© Be patient, expect some instability

Or just use diffusion models!

Much more stable and better results in 2025

