Heman Shakeri

Recall: The Autoencoder from Module 6

We've seen autoencoders as unsupervised learning tools:

Input x > Encoder)@

Decoder % Output X

h

Goal: Minimize reconstruction error ||x — %||?
Latent code z: Compressed representation of input
The Problem: Can we generate new samples?

Try sampling random z and decoding...

Recall the Latent Space Geometry

What we hope for: What we actually get:

m Continuous latent space . .
inuou P m Scattered, disconnected regions

= Smooth interpolation .
= Random points — garbage

m Every point decodes to something -
m No principled way to sample

meaningful
7
Z

dog
[}

. o

) ° °
Ovalid! cat o

21

7 \

Variational Autoencoder

Standard Autoencoder

We need the latent space to be a continuous probability distribution!

VAE

The Paper That Started It All

“Auto-Encoding Variational Bayes” (2013)
Diederik P. Kingma and Max Welling
https://arxiv.org/abs/1312.6114

Idea: Instead of learning a single point z for each input, learn a distribution
over z.

Specifically: Learn parameters p and o of a Gaussian

q(z|x) = N (z; pu(x), diag(a?(x)))

Why this is genius: We can now sample from the latent space to generate!

https://arxiv.org/abs/1312.6114

VAE Architecture

Key difference from standard AE: Encoder outputs distribution

parameters, not a point!

Input

Encoder
Network

Decoder
Network

Output
X

Reconstruction

The Solution: A Lower Bound

Strategy: Use a Tractable Proxy

Since we can't maximize log p(x), we
find a new, tractable function (the
ELBO) that is a lower bound. By

maximizing this proxy, we push up
the true likelihood.

The Jensen's Inequality Trick

We use it because log is a concave
function, which means:

log(E[Y]) > E[log(Y)]. This one
rule lets us create the bound.

v

Terse Derivation

@ Start with log p(x) and
introduce g(z|x):

o ZXP(XVZ) .
flg/qu)qwﬂd

@ Rewrite as an expectation:
plx,2)
=log | E
g(q{«dn]>
© Apply Jensen’s (move log inside):
plx,2)
> E, |lo
- q{g(«4n>}

© Rearrange... and we get the
ELBO!

The Beautiful Math: ELBO

The Challenge: We want to maximize log p(x) (likelihood of our data), but
it's intractable!

0g p(x) = log | p(xlz)p(z)dz

Solution: Introduce approximate posterior g(z|x) and derive a lower bound

Using Jensen’s inequality, we get the Evidence Lower BOund (ELBO):

log p(x) > Eq(zjx)[log p(x|2)] — Dki(q(z|x)|p(2))
This is what we maximize!
Two components:

@ Reconstruction term: How well can we reconstruct x from z?

@ Regularization term: How close is our posterior to the prior?

Understanding the ELBO Intuitively

L = Eqzlx[log p(x[2)] = Dre(q(z[x)||p(2))

Reconstruction term keep the latent space tidy!

Reconstruction term: Standard autoencoder objective

m “Can | decode z back to x?”

m Encourages preserving information
KL divergence term: The magic ingredient!

“Is g(z|x) close to standard normal N (0, /)?”
Forces latent codes to be well-behaved

Prevents encoder from cheating by using arbitrary regions

Creates continuous, smooth latent space

The trade-off: Balance reconstruction quality vs. latent space structure

The KL Divergence: Forcing Structure

For Gaussians, the KL divergence has a closed form!

J
1
Dki(q(z|x)|lp(2)) = = Z ,uJ + O'J-2 - Iogcrj2 —-1)
j=1

2
where J is the latent dimension.
What does this do?
m Pulls p toward zero
m Pulls o toward one
m Prevents collapse to deterministic encoding
Result: All latent codes live in a similar region around A(0, /)

This means random samples from A/(0, /) will decode to valid outputs!

The Reparameterization Trick: Visual

Problem: We need to sample z ~ g(z|x), but backpropagation cannot flow
through a random sampling operation.
2~ a(zlx) = N(p, o)

Sampling is not differentiable! — Reparameterize the sampling:
Instead of sampling z directly, write:

z=p+o0e where e~ N(0,])

Original form Reparameterised form

. : Random O : Deterministic

[Kingma, 2013; Bengio, 2013; Rezende et al 2014]

B-VAE: Forcing Disentanglement

m A standard VAE (8 = 1) has a problem.

m The reconstruction term often “wins” the trade-off, forcing the model to

be a perfect autoencoder.

m The result: it ignores the KL term, creating a messy, entangled latent

space just to pass information.

What is Disentanglement?

We want each latent dimension z; to
control one single, independent
factor of the data.

Example:

m For faces, z; might control
“smile,” z controls “head
rotation,” and z3 controls “skin
tone."

m A simple VAE fails at this; z
might control both smile and
rotation (entangled).

The B-VAE Solution

We add a simple hyperparameter (3
to the KL term:

L = Eqllog p(x|z)] — B - Dkc(qllp)

Intuition: When 8 > 1, we put
more pressure on the model to be
structured and forced to find the
most efficient encoding: the true,
underlying, independent factors.
This is disentanglement.

PyTorch Implementation

class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super().__init__()
Encoder
self.encoder = nn.Sequential(
nn.Linear (input_dim, hidden_dim),
nn.ReLU(),
nn.Linear (hidden_dim, hidden_dim),
nn.ReLUQ)
)
self.fc_mu = nn.Linear(hidden_dim, latent_dim)
self.fc_logvar = nn.Linear(hidden_dim, latent_dim)

Decoder
self.decoder = nn.Sequential(
nn.Linear (latent_dim, hidden_dim),

nn.ReLU(),

nn.Linear (hidden_dim, hidden_dim),
nn.ReLUQ),

nn.Linear(hidden_dim, input_dim),
nn.Sigmoid ()

VAE Forward Pass and Loss

def encode(self, x):
h = self.encoder(x)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar

def reparameterize(self, mu, logvar):
std = torch.exp(0.5 x logvar) # sigma = exp(0.5 * log(sigma~2))
eps = torch.randn_like(std) # Sample epsilon ~ N(0,1)
return mu + eps * std # z = mu + sigma * epsilon

def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
recon_x = self.decoder(z)
return recon_x, mu, logvar

def vae_loss(recon_x, x, mu, logvar):
Reconstruction loss (binary cross-entropy)
recon_loss = F.binary_cross_entropy(recon_x, x, reduction='sum')
KL divergence
k1l_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return recon_loss + kl_loss

Generation: Sampling from the Prior

Training: Encode data — sample latent — decode
Generation: Skip the encoder!

@ Sample z ~ N(0, /) directly from prior

@ Pass through decoder: X = Decoder(z)

© Get a new sample!

Decoder | Generated
Network 1 Sample

Why this works: KL term forced all encodings near N(0, /)

Random samples from this region decode to valid data!

Interpolation: The Power of Continuous Space

Because latent space is continuous, we can interpolate!

Procedure:

@ Encode two images: z; = Encode(xy), z; = Encode(xz)
@ Interpolate: z; = (1 — t)z1 + tzp for t € [0, 1]
@ Decode: x; = Decode(z;)

e

Smooth transition!

This doesn’t work with standard autoencoders because their latent space has
holes!

Connection to Diffusion Models

Remember Latent Diffusion from the previous lecture?

Stable Diffusion uses a VAE!

m Pre-trained VAE encoder compresses images 8x
m Diffusion happens in latent space (64 x64 instead of 512x512)
m VAE decoder upsamples final result

Why VAE specifically?

m Continuous latent space — perfect for diffusion
m Learned compression preserves important features

m Separate the compression problem from generation

This is a brilliant example of composing different generative models!

Limitations of VAEs

Blurriness problem:

m VAE samples tend to be blurrier than GANs
m Why? Reconstruction loss averages over possibilities

m The prior assumption (Gaussian) may be too restrictive
Posterior collapse:

m Sometimes decoder ignores latent code
m KL term goes to zero, no information in z

m Solutions: Annealing 3, architectural changes
Difficulty with complex distributions:

m Gaussian assumption may be too simple
m Real data distributions are multimodal, complex

m Led to variants: VQ-VAE, Normalizing Flows, etc.

VAE Variants and Extensions

Conditional VAE (CVAE):

m Condition on class labels or attributes
m Control what to generate

VQ-VAE (Vector Quantized VAE):

m Discrete latent space instead of continuous
m Used in DALL-E, better for high-quality images

m Learned codebook of latent vectors
Hierarchical VAE:

m Multiple levels of latent variables

m Captures structure at different scales
Importance Weighted AE (IWAE):

m Tighter bound on log-likelihood
m Better density estimation

Why VAEs Matter

Theoretical elegance:

m Principled probabilistic framework
m Interpretable objective (ELBO)

m Connections to information theory, Bayesian inference

Practical applications:

m Image generation and compression

m Anomaly detection (reconstruction error)

m Representation learning for downstream tasks
m Semi-supervised learning

m Data imputation and denoising
Foundation for modern generative models:

m ldeas appear in diffusion models
m VQ-VAE powers DALL-E

m Latent space manipulation techniques

Key Takeaways
1. The Core ldea:

m Encode data as distributions, not points

m Use reparameterization trick for backprop
2. The ELBO:

m Reconstruction: preserve information

m KL divergence: regularize latent space
3. The Power:

m Principled generation by sampling from prior
m Continuous latent space enables interpolation

m Probabilistic framework with theoretical guarantees
4. The Legacy:

m Foundation for modern generative Al
m Still used in Stable Diffusion today

m Inspired countless variants and improvements

