
Lecture 12.3: GenAI: Variational
Autoencoders

Heman Shakeri

Recall: The Autoencoder from Module 6

We’ve seen autoencoders as unsupervised learning tools:

Input x Encoder z Decoder Output x̂

Goal: Minimize reconstruction error ∥x − x̂∥2

Latent code z: Compressed representation of input
The Problem: Can we generate new samples?
Try sampling random z and decoding...

Recall the Latent Space Geometry

What we hope for:
Continuous latent space
Smooth interpolation
Every point decodes to something
meaningful

z1

z2

valid!

Variational Autoencoder

What we actually get:
Scattered, disconnected regions
Random points → garbage
No principled way to sample

z1

z2

cat

dog

???

Standard Autoencoder

We need the latent space to be a continuous probability distribution!

VAE

The Paper That Started It All

“Auto-Encoding Variational Bayes” (2013)
Diederik P. Kingma and Max Welling
https://arxiv.org/abs/1312.6114

Idea: Instead of learning a single point z for each input, learn a distribution
over z.
Specifically: Learn parameters µ and σ of a Gaussian

q(z|x) = N (z; µ(x), diag(σ2(x)))

Why this is genius: We can now sample from the latent space to generate!

https://arxiv.org/abs/1312.6114

VAE Architecture

Key difference from standard AE: Encoder outputs distribution
parameters, not a point!

Input
x

Encoder
Network

µ

σ

Sample
z

ϵ ∼ N (0, I)

Decoder
Network

Output
x̂

µ

σ

Reconstruction

The Solution: A Lower Bound

Strategy: Use a Tractable Proxy
Since we can’t maximize log p(x), we
find a new, tractable function (the
ELBO) that is a lower bound. By

maximizing this proxy, we push up
the true likelihood.

The Jensen’s Inequality Trick
We use it because log is a concave
function, which means:
log(E[Y]) ≥ E[log(Y)]. This one
rule lets us create the bound.

Terse Derivation
1 Start with log p(x) and

introduce q(z|x):

= log
∫

q(z|x)p(x, z)
q(z|x) dz

2 Rewrite as an expectation:

= log
(
Eq

[
p(x, z)
q(z|x)

])
3 Apply Jensen’s (move log inside):

≥ Eq

[
log

(
p(x, z)
q(z|x)

)]
4 Rearrange... and we get the

ELBO!

The Beautiful Math: ELBO

The Challenge: We want to maximize log p(x) (likelihood of our data), but
it’s intractable!

log p(x) = log
∫

p(x|z)p(z)dz

Solution: Introduce approximate posterior q(z|x) and derive a lower bound
Using Jensen’s inequality, we get the Evidence Lower BOund (ELBO):

log p(x) ≥ Eq(z|x)[log p(x|z)] − DKL(q(z|x)∥p(z))

This is what we maximize!
Two components:

1 Reconstruction term: How well can we reconstruct x from z?
2 Regularization term: How close is our posterior to the prior?

Understanding the ELBO Intuitively

L = Eq(z|x)[log p(x|z)]︸ ︷︷ ︸
Reconstruction term

− DKL(q(z|x)∥p(z))︸ ︷︷ ︸
keep the latent space tidy!

Reconstruction term: Standard autoencoder objective

“Can I decode z back to x?”
Encourages preserving information

KL divergence term: The magic ingredient!

“Is q(z|x) close to standard normal N (0, I)?”
Forces latent codes to be well-behaved
Prevents encoder from cheating by using arbitrary regions
Creates continuous, smooth latent space

The trade-off: Balance reconstruction quality vs. latent space structure

The KL Divergence: Forcing Structure

For Gaussians, the KL divergence has a closed form!

DKL(q(z|x)∥p(z)) = 1
2

J∑
j=1

(
µ2

j + σ2
j − log σ2

j − 1
)

where J is the latent dimension.
What does this do?

Pulls µ toward zero
Pulls σ toward one
Prevents collapse to deterministic encoding

Result: All latent codes live in a similar region around N (0, I)
This means random samples from N (0, I) will decode to valid outputs!

The Reparameterization Trick: Visual
Problem: We need to sample z ∼ q(z|x), but backpropagation cannot flow
through a random sampling operation.

z ∼ q(z|x) = N (µ, σ2)
Sampling is not differentiable! → Reparameterize the sampling:
Instead of sampling z directly, write:

z = µ + σ ⊙ ϵ, where ϵ ∼ N (0, I)

Original form

ϕ x

z

f

∼ q(z |ϕ, x)

Reparameterised form

ϕ x ϵ

z

f

= g(ϕ, x , ϵ)

∼ p(ϵ)

Backprop
∂f /∂zi

∂f /∂ϕi

≈ ∂L/∂ϕi

: Deterministic: Random

[Kingma, 2013; Bengio, 2013; Rezende et al 2014]

β-VAE: Forcing Disentanglement

A standard VAE (β = 1) has a problem.
The reconstruction term often “wins” the trade-off, forcing the model to
be a perfect autoencoder.
The result: it ignores the KL term, creating a messy, entangled latent
space just to pass information.

What is Disentanglement?
We want each latent dimension zi to
control one single, independent
factor of the data.
Example:

For faces, z1 might control
“smile,” z2 controls “head
rotation,” and z3 controls “skin
tone."
A simple VAE fails at this; z1
might control both smile and
rotation (entangled).

The β-VAE Solution
We add a simple hyperparameter β
to the KL term:

L = Eq[log p(x|z)] − β · DKL(q∥p)

Intuition: When β > 1, we put
more pressure on the model to be
structured and forced to find the
most efficient encoding: the true,
underlying, independent factors.
This is disentanglement.

PyTorch Implementation

1 class VAE(nn.Module):
2 def __init__(self, input_dim, hidden_dim, latent_dim):
3 super().__init__()
4 # Encoder
5 self.encoder = nn.Sequential(
6 nn.Linear(input_dim, hidden_dim),
7 nn.ReLU(),
8 nn.Linear(hidden_dim, hidden_dim),
9 nn.ReLU()

10)
11 self.fc_mu = nn.Linear(hidden_dim, latent_dim)
12 self.fc_logvar = nn.Linear(hidden_dim, latent_dim)
13
14 # Decoder
15 self.decoder = nn.Sequential(
16 nn.Linear(latent_dim, hidden_dim),
17 nn.ReLU(),
18 nn.Linear(hidden_dim, hidden_dim),
19 nn.ReLU(),
20 nn.Linear(hidden_dim, input_dim),
21 nn.Sigmoid()
22)

VAE Forward Pass and Loss

1 def encode(self, x):
2 h = self.encoder(x)
3 mu = self.fc_mu(h)
4 logvar = self.fc_logvar(h)
5 return mu, logvar
6
7 def reparameterize(self, mu, logvar):
8 std = torch.exp(0.5 * logvar) # sigma = exp(0.5 * log(sigma^2))
9 eps = torch.randn_like(std) # Sample epsilon ~ N(0,1)

10 return mu + eps * std # z = mu + sigma * epsilon
11
12 def forward(self, x):
13 mu, logvar = self.encode(x)
14 z = self.reparameterize(mu, logvar)
15 recon_x = self.decoder(z)
16 return recon_x, mu, logvar
17
18 def vae_loss(recon_x, x, mu, logvar):
19 # Reconstruction loss (binary cross-entropy)
20 recon_loss = F.binary_cross_entropy(recon_x, x, reduction='sum')
21 # KL divergence
22 kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
23 return recon_loss + kl_loss

Generation: Sampling from the Prior

Training: Encode data → sample latent → decode
Generation: Skip the encoder!

1 Sample z ∼ N (0, I) directly from prior
2 Pass through decoder: x̂ = Decoder(z)
3 Get a new sample!

z ∼
N (0, I)

Decoder
Network

Generated
Sample

Why this works: KL term forced all encodings near N (0, I)
Random samples from this region decode to valid data!

Interpolation: The Power of Continuous Space

Because latent space is continuous, we can interpolate!
Procedure:

1 Encode two images: z1 = Encode(x1), z2 = Encode(x2)
2 Interpolate: zt = (1 − t)z1 + tz2 for t ∈ [0, 1]
3 Decode: xt = Decode(zt)

x1 x2

Smooth transition!

This doesn’t work with standard autoencoders because their latent space has
holes!

Connection to Diffusion Models

Remember Latent Diffusion from the previous lecture?
Stable Diffusion uses a VAE!

Pre-trained VAE encoder compresses images 8×
Diffusion happens in latent space (64×64 instead of 512×512)
VAE decoder upsamples final result

Why VAE specifically?

Continuous latent space → perfect for diffusion
Learned compression preserves important features
Separate the compression problem from generation

This is a brilliant example of composing different generative models!

Limitations of VAEs

Blurriness problem:

VAE samples tend to be blurrier than GANs
Why? Reconstruction loss averages over possibilities
The prior assumption (Gaussian) may be too restrictive

Posterior collapse:

Sometimes decoder ignores latent code
KL term goes to zero, no information in z
Solutions: Annealing β, architectural changes

Difficulty with complex distributions:

Gaussian assumption may be too simple
Real data distributions are multimodal, complex
Led to variants: VQ-VAE, Normalizing Flows, etc.

VAE Variants and Extensions

Conditional VAE (CVAE):

Condition on class labels or attributes
Control what to generate

VQ-VAE (Vector Quantized VAE):

Discrete latent space instead of continuous
Used in DALL-E, better for high-quality images
Learned codebook of latent vectors

Hierarchical VAE:

Multiple levels of latent variables
Captures structure at different scales

Importance Weighted AE (IWAE):

Tighter bound on log-likelihood
Better density estimation

Why VAEs Matter

Theoretical elegance:

Principled probabilistic framework
Interpretable objective (ELBO)
Connections to information theory, Bayesian inference

Practical applications:

Image generation and compression
Anomaly detection (reconstruction error)
Representation learning for downstream tasks
Semi-supervised learning
Data imputation and denoising

Foundation for modern generative models:

Ideas appear in diffusion models
VQ-VAE powers DALL-E
Latent space manipulation techniques

Key Takeaways
1. The Core Idea:

Encode data as distributions, not points
Use reparameterization trick for backprop

2. The ELBO:

Reconstruction: preserve information
KL divergence: regularize latent space

3. The Power:

Principled generation by sampling from prior
Continuous latent space enables interpolation
Probabilistic framework with theoretical guarantees

4. The Legacy:

Foundation for modern generative AI
Still used in Stable Diffusion today
Inspired countless variants and improvements

