
Lecture 12.2: GenAI: Diffusion Models
From Discrimination to Creation

Heman Shakeri

Self Supervised Learning

Most intelligence comes from unsupervised observation

Babies learn how the world works largely by observation
• Object permanence, gravity, intuitive physics
• No explicit labels needed

Humans learn to drive with ∼20 hours of practice
• Leverage vast background knowledge from observation
• Not millions of labeled examples

Common sense: Generalized knowledge about the world
• Taken for granted in humans
• The “dark matter” of AI (LeCun & Misra, 2021)

Self-Supervised Learning: Recall the Core Idea
Learn to predict hidden parts from visible parts

The cat sat on the [MASK]

Input (observed)

predict

The cat sat on the mat

Output (predicted)

Free
supervision!

Key insight: The data itself provides the training signal

No manual labeling required
Can scale to billions of examples

Self-Supervised Learning for Language
Two dominant strategies from Lectures 9–11:

Strategy How it works Examples

Masked Language Modeling Mask 15% of tokens, predict
them

BERT,
RoBERTa

Autoregressive Predict next token given all pre-
vious

GPT, LLaMA

Why this works for text:

Discrete tokens: Can enumerate all possibilities
Manageable length: Hundreds to thousands of tokens
Natural ordering: Left-to-right for autoregressive
Compactness: Can represent probability over entire vocabulary

We observed that these models learn rich semantic representations without
labels!

Auto-regressive: One Step at a Time

Key Insight: We can re-frame the autoregressive for vision: Instead of
regressing a blurry “average” pixel, we can predict a probability distribution
over discrete pixel values (e.g., 0-255).

Process: (Factorization of the joint distribution)

1 Start with image missing all pixels
2 Predict first pixel class: p(x1) (Softmax over 256 values)
3 Predict second given first: p(x2 | x1)
4 Continue: p(xt | x<t) for all t

Factorization:

p(x) = p(x1) · p(x2 | x1) · p(x3 | x1, x2) · · · p(xT | x<T)

Add diversity: Sample from the discrete distribution xt ∼ p(xt | x<t)

Auto-regressive: Successes and Limitations
Modern successes:

GPT models (including ChatGPT): Text generation, one token at a
time
PixelCNN: Image generation (Masked Convolution)

• It uses Softmax over 256 pixel values!
• Avoids blur by treating pixels as discrete classes, not continuous.

WaveNet: Audio generation (Dilated Convolution)
• Same trick: Uses Softmax over 256 quantized audio levels.

The Problem for Images:

Modality Length Auto-regressive?
Text (GPT) Thousands of tokens Efficient!
Images (512×512) 262,144 pixels Too slow!

Challenge: The discrete approach works, but is computationally infeasible.
Can we find a new way to handle continuous pixels in parallel?

The Vision Challenge: Why Not Just “Tokenize” Images?
Why can’t we just apply text SSL (BERT/GPT) strategies to images?
e.g., Break image into 16x16 patches (like ViT) and treat them as “tokens”?

Problem 1: No Finite “Token” Vocabulary
• Text: We have a shared, discrete vocabulary (∼50K tokens). We can use

Softmax.
• Images: A “patch” is a high-dimensional continuous vector (16x16x3 =

768 dims).
• We cannot run Softmax over an infinite, continuous space!

Problem 2: The Averaging Problem Returns
• “Okay, so let’s predict the continuous patch vector using Regression

(MSE loss)."
• This fails! The target (the patch) is a set of highly correlated pixels.
• If a patch has multiple valid completions (e.g., pointy ear, floppy ear),

the MSE loss forces the model to predict the average vector.
• Result: A blurry, unrealistic patch. Predicting a correlated target fails!

Problem 3: No Natural Ordering
• Text has a clear 1D (left-to-right) structure for autoregression.
• Images are 2D. A raster scan (row-by-row) of patches is arbitrary and

inefficient.

We need an SSL approach built for continuous, 2D,
parallel data.

The Key Insight: Change The Prediction Target
The Problem with Masking: The target (the masked patch) is a vector of
correlated pixels. Predicting it with MSE causes the averaging problem.

The Solution (Diffusion): Change the task! Instead of predicting the patch,
predict the noise we added.

Why This Works (Denoising):
1 New Target: The target is now the Gaussian noise vector ϵ.
2 Independence: By definition, the noise ϵ is uncorrelated across all

pixels.
3 Averaging Solved: We can now use a simple MSE loss (∥ϵ− ϵ̂∥2) to

predict all 786,432 independent noise values in parallel!
4 SSL Signal: This is a perfect SSL task: we know the noise we added,

so we have the ground truth for free.

Predicting independent noise avoids the averaging
problem!

Visual Comparison: Three Strategies

Autoregressive

1 pixel at a time
262K steps

Too slow!

Masking

Predict patch
∼1K steps
Blurry!

Diffusion

All pixels + noise
50-100 steps

Optimal!

Diffusion: > 2000× speedup over autoregressive for images!

The Diffusion Process: Overview

Two complementary processes:

1. Forward (Fixed): Gradually add noise over T steps

Start: Clean image x0

End: Pure Gaussian noise xT ∼ N (0, I)
This is a fixed, known process

2. Reverse (Learned): Gradually remove noise

Start: Pure noise xT

End: Clean image x0

This is what we learn with a neural network

If we know how to reverse the noising, we can generate!

Forward Process: Adding Noise

Iterative formulation:

xt =
√

1− βt · xt−1 +
√

βt · ϵ, ϵ ∼ N (0, I)

where βt is a noise schedule: 0 < β1 < β2 < · · · < βT < 1

Key notation: Define αt = 1− βt and ᾱt =
∏t

s=1 αs

Closed-form: thanks to the properties of Gaussian distributions, we can
analytically solve the entire sequential process (reparameterization trick):

xt =
√

ᾱtx0 +
√

1− ᾱtϵ, ϵ ∼ N (0, I)

This closed form is crucial for efficient training!
Can jump directly to any timestep t without iterating

Diffusion Process Visualization

Clean

· · ·

Pure Noise

+ noise + noise + noise

Forward (fixed)

Generated Sample

denoisedenoisedenoise

Reverse (learned)

Challenge: How do we learn to reverse this process?

The Reverse Process: The Central Challenge
We have the (easy) Forward Process: We know how to add noise
step-by-step: p(xt | xt−1)

x0 → x1 → · · · → xT

We need the (hard) Reverse Process: To generate, we must learn to
remove noise step-by-step: p(xt−1 | xt)

x0 ← x1 ← · · · ← xT

The Problem: This reverse distribution p(xt−1 | xt) is intractable. It’s
unknown and depends on the entire (unknown) data distribution.

The Key Insight: It can be shown that this difficult reverse step becomes
possible if we can estimate one thing: the gradient of the log-probability of
the noisy data distribution, ∇xt log pt(xt).

This gradient is the key to reversing the process. It has a name...

The Score Function

Definition: For probability distribution p(x), the score function is:

s(x) = ∇x log p(x)

This is the gradient of log-probability with respect to data

Intuition: Vector field pointing toward high-density regions

At each point x, s(x) is a vector
Points in direction where log p(x) increases most rapidly
Following this field leads from noise to data!

For diffusion: We have score at each noise level t:

st(x) = ∇x log pt(x)

Score Function as Vector Field

High p(x)

High p(x)

High p(x)

Score vectors s(x)
point toward high density

Generation: Start from noise, follow the score to reach data

The Key Connection: Denoising is Score Matching
Tweedie’s Formula: For noisy observation xt =

√
ᾱtx0 +

√
1− ᾱtϵ:

∇xt log pt(xt) = − 1√
1− ᾱt

E[ϵ | xt]

This means:

The score function is proportional to expected noise
Training to predict noise ⇔ learning the score!
so we don’t have to learn the score function directly, instead we train a
neural network ϵθ(xt , t) to do self-supervised noise prediction (ϵ)!
This is called denoising score matching

Training objective: Train ϵθ(xt , t) to predict noise:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt , t)∥2]

where xt =
√

ᾱtx0 +
√

1− ᾱtϵ

Why Predict Noise Instead of Images?

Alternative formulations:

Predict clean image x0 directly
Predict mean µθ directly

Why noise prediction is better:

1 Simpler objective: Just MSE loss on noise
2 Better gradient flow: Avoids predicting averages
3 Connection to score: ϵθ ≈ −

√
1− ᾱt∇xt log pt(xt)

4 Stationary target: Noise is simple, stationary distribution

Once we predict noise, we can:

Recover the score function
Compute the denoising step to get xt−1

Training Procedure (Remarkably Simple)

For each training step:

1 Sample data point x0 from dataset
2 Sample random timestep t ∼ Uniform(1, T)
3 Sample random noise ϵ ∼ N (0, I)
4 Create noisy version: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

5 Predict noise: ϵ̂ = ϵθ(xt , t)
6 Minimize MSE: L = ∥ϵ− ϵ̂∥2

That’s it! Just predict the noise you added

Sampling: Generating Images

To generate a new image:

1 Start with pure noise: xT ∼ N (0, I)
2 For t = T , T − 1, . . . , 1:

• Predict noise: ϵ̂ = ϵθ(xt , t)
• Compute mean: µ = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵ̂
)

• Sample z ∼ N (0, I) if t > 1, else z = 0
• Update: xt−1 = µ + σtz

3 Return x0

Intuition:

At each step: predict and remove noise
Add small random noise for stochasticity (except last step)
Gradually reveal the image by following the score

From Self-Supervision to Creativity

A puzzle emerges:

Diffusion models learn to denoise images (self-supervised)
They’re trained to predict noise as accurately as possible
Yet they generate novel, creative images not in training data

The apparent contradiction:

1 Perfect learning → learns ideal score function exactly
2 Ideal score function → perfectly reverses forward process
3 Perfect reversal → only generates memorized training examples
4 But we observe: Creative, novel outputs!

The Central Puzzle
Question: How do diffusion models produce creative outputs?
Novel combinations not in training data?

The Paradox:
If model perfectly learns ideal score function on finite dataset, it can only
memorize training data!

Why? For finite dataset D = {x(1), . . . , x(N)}:

pt(x) = 1
N

N∑
i=1
N (x |

√
ᾱtx(i), (1− ᾱt)I)

As t → 0, posterior concentrates on nearest training image

Perfect training = only memorization
Again, where does creativity come from?

Creativity as Structured Failure
Theoretical Insight: Creativity arises because model fails to learn ideal score

Crucially: This failure is structured by inductive biases!

For CNN-based U-Net, two biases are key:
1 Locality: Finite receptive fields

• Score at pixel (i , j) depends only on local neighborhood
• Cannot coordinate globally instantaneously
• Connects to self-supervision: Each patch makes independent denoising

decisions
2 Equivariance: Weight sharing (Lecture 4!)

• CNNs treat different locations similarly
• Translation invariance
• Connects to self-supervision: Denoising strategy learned on one patch

applies everywhere

These architectural constraints prevent implementing an “Ideal Score
Machine”
Result: The model denoises locally, composing globally novel mosaics.

The Simplest Example: Black and White Images

Training set: Only 2 images (all black, all white)

Training:

All Black All White

Generated:

Novel! Novel! Novel!

Local
decisions

Exponentially many novel samples! (approximately 2N2 for N × N image)
How? Each pixel independently decides its color based on local neighborhood
Local consistency: majority color in patch = center pixel

The Mechanism: Patch Mosaics

What happens instead of memorization:

1 Local Bayesian Inference:
• Each pixel estimates local score using only nearby info
• “Which training patch do I most resemble?”

2 Mixing and Matching:
• Model doesn’t memorize whole images
• Composes patches from different training images

3 Locally Consistent, Globally Novel:
• Every small patch looks realistic (matches training)
• Overall combination is new (never seen)
• Combinatorial creativity!

Coarse-to-Fine Generation

Important empirical observation:
Effective receptive field shrinks during reverse process

Early (t ≈ T)

Large receptive field
Global structure

Late (t ≈ 0)

Small receptive field
Fine details

Generation proceeds

Strategy:

Early: Large patches set global structure (object type, layout)
Late: Small patches add fine details (textures, edges)

Explaining Spatial Inconsistencies

Famous diffusion “errors”:

Hands with wrong number of fingers
Clothing with incorrect number of arms
Bifurcated shoes or multiple legs on pants

Mechanistic explanation: Excessive locality at late times (t < 0.3)

Receptive field < 5 pixels
Different parts of image cannot coordinate
Each region independently decides “this should be a finger”
Result: Too many fingers!

This is not a bug—it’s a fundamental consequence
of the local score approximation that enables creativity

It’s a trade-off!

Connection to Lecture 6: U-Net Returns!

Recall from Lecture 6: U-Net for image segmentation

Perfect for diffusion because:

Spatial structure: Preserves image layout
Multi-scale: Handles coarse and fine details
Skip connections: Essential for preserving details during denoising
Image-to-image: Noisy image → noise prediction

Typical architecture: ϵθ(xt , t)

Input: Noisy image xt + timestep t
Output: Predicted noise ϵ̂

Timestep embedding: Sinusoidal encoding (like Transformers!)

U-Net for Diffusion

xt

Noisy
32×32

Conv 64
32×32

Conv 128
16×16

Conv 256
8×8

Conv 512
4×4

Conv 256
8×8

Conv 128
16×16

Conv 64
32×32

ϵθ

Predicted
noise

↓ pool

↓ pool

↓ pool

↑ up

↑ up

skip

skip

skip

t embed

Timestep
conditioning

Skip connections are crucial: preserve high-frequency details lost in
downsampling

The Challenge: Pixel-Space is Expensive

DDPM works, but:

512×512 image = 786,432 pixels
Need 50-1000 denoising steps
Running U-Net 1000 times on 512×512 is prohibitive!

Key Observation: Most image information is redundant!
Nearby pixels are highly correlated

Solution: Latent Diffusion
Run diffusion in compressed latent space

Latent Diffusion Models (LDM)

Idea: Use pre-trained VAE to compress images

VAE
Encoder

E

Latent Space
Diffusion here!

VAE
Decoder

D

High-res
512×512×3
(786K pixels)

High-res
512×512×3
(786K pixels)

compress 8× decode

64×64×4
64× smaller!
Only 16K latent dims

Input Output

Process:

1 Encode image to latent: z = E(x)
2 Run diffusion on z (much smaller!)
3 Decode back: x̂ = D(z)

Benefits of Latent Diffusion

Why this is game-changing:

Speed: 64×64 latent vs 512×512 pixels
• 5122

642 = 64× fewer pixels per step!
• Same quality, dramatically faster

Memory: Can train on consumer GPUs
• 512×512 diffusion: needs A100 (80GB)
• 64×64 latent: works on RTX 3090 (24GB)

Quality: Still generate high-res images
• VAE decoder upsamples from latent
• Preserves details surprisingly well

This is what Stable Diffusion uses!

Text Conditioning via Cross-Attention

Challenge: Generate specific content, not random images
Need to condition on text prompts!

Solution: Cross-attention between image and text

“a cat”

CLIP
Text Encoder

ctext

Image Latent
zt

Cross-Attention
Q: image
K, V: text

condition

Conditioned z

Mechanism: Image patches “query” text to find relevant semantic info

Cross-Attention Mechanism

Recall from Lecture 8: Attention mechanism

Attention(Q, K, V) = softmax
(

QK⊤
√

d

)
V

For cross-attention in diffusion:

Q = WQ · zt (query from noisy image)
K = WK · ctext (key from CLIP text)
V = WV · ctext (value from CLIP text)

Intuition:
When generating cat’s ear, image latent “attends to” “cat” in text embedding
Each image region focuses on relevant text concepts

Classifier-Free Guidance (CFG)

Problem: Text conditioning alone may be too weak

Solution: Amplify the conditioning effect!

Training: Randomly drop text 10% of time

Model learns both ϵθ(xt , t, c) and ϵθ(xt , t, ∅)

Sampling: Use guided prediction

ϵ̃ = ϵθ(xt , t, ∅) + s · [ϵθ(xt , t, c)− ϵθ(xt , t, ∅)]

where s > 1 is guidance scale (typically 7.5)

Intuition: Move away from unconditional, toward conditional
Higher s → stronger conditioning but less diversity

Complete Stable Diffusion Pipeline

“a cat wearing
a hat”

CLIP
(frozen)

c

Random
Noise

zT

U-Net
+ Cross-Attn

+ CFG

(trained)

text

z0

Iterate 50 steps

VAE Dec
(frozen)

512×512
output

Components: CLIP (frozen) + U-Net (trained) + VAE (frozen)

Faster Sampling

Problem: DDPM needs 1000 steps, too slow!

Method Steps Description

DDIM 50-100 Deterministic, skip steps
DPM-Solver 20-50 ODE solver for diffusion
Flow Matching 10-20 Continuous flows
Consistency 1-4 Direct mapping

DDIM: Deterministic sampling with fewer steps
Make sampling deterministic, skip timesteps: 50 steps achieves similar quality

Diffusion Transformers (DiT)

Recent trend: Replace U-Net with Transformer blocks

DiT architecture:

1 Patchify: Split latent into patches (like ViT!)
2 Add embeddings: Position + timestep
3 Transformer blocks: Multi-head attention + FFN
4 Unpatchify: Reshape to latent space

Advantages over U-Net:

Scalability: Easy to scale up
Long-range dependencies: Global self-attention
Unified architecture: Same as ViT, BERT, GPT

Results: DiT matches or exceeds U-Net quality with better scaling!

Evaluation Metrics

How do we measure quality?

Metric What it measures Range

FID Distribution similarity Lower better
CLIP Score Text-image alignment Higher better
Human Eval Preference ratings Subjective

FID (Fréchet Inception Distance):

Compare feature distributions of real vs generated
Extract features using Inception-v3
Fit Gaussian, compute Fréchet distance
Lower FID = closer to real data

What We’ve Learned: The Journey

1. The Averaging Problem:

Predicting multiple correlated values → blurring
Solution: Predict one at a time (auto-regressive)

2. The Insight: Break correlations with noise

Add independent Gaussian noise to all pixels
Can predict all simultaneously without averaging!

3. Mathematical Foundation:

Score function s(x) = ∇x log p(x) guides generation
Denoising = Score matching (Tweedie’s formula)
Training: Just predict noise with MSE loss

What We’ve Learned: The Practice
4. Architecture: U-Net from Lecture 6

Skip connections preserve details
Multi-scale processing
Timestep conditioning

5. Creativity Paradox:

Perfect learning → memorization
Creativity from structured failure
CNN locality + equivariance → patch mosaics
Coarse-to-fine: large patches (early) to small (late)

6. Stable Diffusion: Making it practical

Latent diffusion (64× faster)
Cross-attention for text conditioning
Classifier-free guidance (amplify conditioning)

Key Takeaways

1 Diffusion revolutionized image generation
• Stable training, high quality, excellent diversity
• Solved problems that plagued GANs

2 Self-supervised learning is key
• No labels needed, just images
• Denoising provides natural training signal

3 Architecture matters
• U-Net perfect for image-to-image tasks
• Inductive biases shape creativity
• Future: Transformer-based (DiT)

4 Efficiency through clever design
• Latent space diffusion (64× speedup)
• Cross-attention for conditioning
• Classifier-free guidance for control

The Generative AI Revolution
From 2020 to 2025:

2020: DDPM introduces stable training
2021: DALL-E shows text-to-image, CLIP enables grounding
2022: Stable Diffusion democratizes (open source!)
2023: Midjourney reaches photorealism, video begins
2024: Sora generates minute-long videos
2025: Multimodal unified models

Applications:

Art, design, advertising
Scientific research (proteins, drugs)
Text-to-video (Sora, Runway)
Image editing, super-resolution

We’re still in the early days!

	Self-Supervised Learning: The Foundation
	Solution 1: Auto-regressive Models
	The Mathematical Foundation: Score Functions
	The Creativity Paradox
	The U-Net Architecture
	Stable Diffusion: Making Diffusion Practical
	Beyond DDPM: Advanced Topics
	Summary

