Heman Shakeri

Self Supervised Learning

Most intelligence comes from unsupervised observation

m Babies learn how the world works largely by observation
® Object permanence, gravity, intuitive physics
® No explicit labels needed

m Humans learn to drive with ~20 hours of practice

® | everage vast background knowledge from observation
® Not millions of labeled examples

m Common sense: Generalized knowledge about the world

® Taken for granted in humans
® The “dark matter” of Al (LeCun & Misra, 2021)

Self-Supervised Learning: Recall the Core Idea

Learn to predict hidden parts from visible parts

Input (observed)

The cat sat on the [MASK]

N =~ -
| predict

The cat sat on the mat

Free
supervision!

Output (predicted)

Key insight: The data itself provides the training signal

m No manual labeling required
m Can scale to billions of examples

Self-Supervised Learning for Language

Two dominant strategies from Lectures 9-11:

Strategy How it works Examples
Masked Language Modeling Mask 15% of tokens, predict BERT,
them RoBERTa
Autoregressive Predict next token given all pre- GPT, LLaMA
vious

Why this works for text:

Discrete tokens: Can enumerate all possibilities

Manageable length: Hundreds to thousands of tokens

Natural ordering: Left-to-right for autoregressive
Compactness: Can represent probability over entire vocabulary

We observed that these models learn rich semantic representations without
labels!

Auto-regressive: One Step at a Time

Key Insight: We can re-frame the autoregressive for vision: Instead of
regressing a blurry “average” pixel, we can predict a probability distribution
over discrete pixel values (e.g., 0-255).

Process: (Factorization of the joint distribution)

@ Start with image missing all pixels

@ Predict first pixel class: p(x1) (Softmax over 256 values)
@ Predict second given first: p(x2 | x1)

@ Continue: p(x; | x<¢) for all t

Factorization:
p(x) = p(x1) - P | x1) - p(x3 | x1, %) - p(xT | x<7)

Add diversity: Sample from the discrete distribution x; ~ p(x¢ | x<¢)

Auto-regressive: Successes and Limitations
Modern successes:

m GPT models (including ChatGPT): Text generation, one token at a
time
m PixelCNN: Image generation (Masked Convolution)

® |t uses Softmax over 256 pixel values!
® Avoids blur by treating pixels as discrete classes, not continuous.

m WaveNet: Audio generation (Dilated Convolution)
® Same trick: Uses Softmax over 256 quantized audio levels.

The Problem for Images:

Modality Length Auto-regressive?
Text (GPT) Thousands of tokens Efficient!
Images (512x512) 262,144 pixels Too slow!

Challenge: The discrete approach works, but is computationally infeasible.
Can we find a new way to handle continuous pixels in parallel?

The Vision Challenge: Why Not Just “Tokenize” Images?

Why can’t we just apply text SSL (BERT/GPT) strategies to images?
e.g., Break image into 16x16 patches (like ViT) and treat them as “tokens"?

= Problem 1: No Finite “Token” Vocabulary
® Text: We have a shared, discrete vocabulary (~50K tokens). We can use
Softmax.
® Images: A “patch” is a high-dimensional continuous vector (16x16x3 =
768 dims).
® We cannot run Softmax over an infinite, continuous space!
= Problem 2: The Averaging Problem Returns
® “Okay, so let's predict the continuous patch vector using Regression
(MSE loss)."
® This fails! The target (the patch) is a set of highly correlated pixels.
® |f a patch has multiple valid completions (e.g., pointy ear, floppy ear),
the MSE loss forces the model to predict the average vector.
® Result: A blurry, unrealistic patch. Predicting a correlated target fails!
m Problem 3: No Natural Ordering
® Text has a clear 1D (left-to-right) structure for autoregression.
® Images are 2D. A raster scan (row-by-row) of patches is arbitrary and
inefficient.

The Key Insight: Change The Prediction Target

The Problem with Masking: The target (the masked patch) is a vector of
correlated pixels. Predicting it with MSE causes the averaging problem.

The Solution (Diffusion): Change the task! Instead of predicting the patch,
predict the noise we added.

Why This Works (Denoising):

@ New Target: The target is now the Gaussian noise vector €.

@ Independence: By definition, the noise € is uncorrelated across all
pixels.

@ Averaging Solved: We can now use a simple MSE loss (||e — €||?) to
predict all 786,432 independent noise values in parallel!

@ SSL Signal: This is a perfect SSL task: we know the noise we added,
so we have the ground truth for free.

Predicting independent noise avoids the averaging
problem!

Visual Comparison: Three Strategies

Autoregressive Masking Diffusion

1 pixel at a time Predict patch All pixels + noise
262K steps ~1K steps 50-100 steps
Too slow! Blurry! Optimal!

Diffusion: > 2000x speedup over autoregressive for images!

The Diffusion Process: Overview

Two complementary processes:

1. Forward (Fixed): Gradually add noise over T steps

m Start: Clean image xo
m End: Pure Gaussian noise x7 ~ N(0,1)
m This is a fixed, known process

2. Reverse (Learned): Gradually remove noise

m Start: Pure noise x1
m End: Clean image xg

m This is what we learn with a neural network

If we know how to reverse the noising, we can generate!

Forward Process: Adding Noise

Iterative formulation:
Xt = /1= 0 %1+ VBe-e, e~N(0,]1)

where 3; is a noise schedule: 0 < 51 < B < --- < fr <1
Key notation: Define a; =1 — 3; and a; = H§:1 Qs

Closed-form: thanks to the properties of Gaussian distributions, we can
analytically solve the entire sequential process (reparameterization trick):

x: = Varxo + V1 —aze, €~ N(0,I)

This closed form is crucial for efficient training!

Can jump directly to any timestep t without iterating

Diffusion Process Visualization

Forward (fixed)

Challenge: How do we learn to reverse this process?

The Reverse Process: The Central Challenge
We have the (easy) Forward Process: We know how to add noise
step-by-step: p(x¢ | x¢—1)

Xgp —> X1 —> = XT

We need the (hard) Reverse Process: To generate, we must learn to
remove noise step-by-step: p(x¢—1 | X¢)

Xp < X1 < - < XT

The Problem: This reverse distribution p(x;_1 | x;) is intractable. It's
unknown and depends on the entire (unknown) data distribution.

The Key Insight: It can be shown that this difficult reverse step becomes
possible if we can estimate one thing: the gradient of the log-probability of
the noisy data distribution, Vy, log pe(x¢).

This gradient is the key to reversing the process. It has a name...

The Score Function

Definition: For probability distribution p(x), the score function is:
s(x) = Vi log p(x)

This is the gradient of log-probability with respect to data

Intuition: Vector field pointing toward high-density regions

m At each point x, s(x) is a vector
m Points in direction where log p(x) increases most rapidly
m Following this field leads from noise to data!

For diffusion: We have score at each noise level t:

s¢(x) = Vi log pt(x)

Score Function as Vector Field

High p(x)

v T
*'7//

/" K

ngh p(x)
Score vectors s(x)

point toward high density

Generation: Start from noise, follow the score to reach data

The Key Connection: Denoising is Score Matching
Tweedie’s Formula: For noisy observation x; = \/a;xo + /1 — &;€:
V. log pe(xe) = ————Ele | x]
x; 108 Pt\Xt) = Ji—a, t

This means:

m The score function is proportional to expected noise
m Training to predict noise < learning the score!

m so we don't have to learn the score function directly, instead we train a
neural network €g(x¢, t) to do self-supervised noise prediction (€)!

m This is called denoising score matching

Training objective: Train €p(x¢, t) to predict noise:

L=Etx,e [He — ea(xt, f)m

where x; = \/a:xg + /1 — az€

Why Predict Noise Instead of Images?

Alternative formulations:

m Predict clean image xq directly
m Predict mean g directly

Why noise prediction is better:

@ Simpler objective: Just MSE loss on noise

Q@ Better gradient flow: Avoids predicting averages

@ Connection to score: €y ~ —/1 — @;Vy, log p:(x;)

@ Stationary target: Noise is simple, stationary distribution

Once we predict noise, we can:

m Recover the score function

m Compute the denoising step to get x;_1

Training Procedure (Remarkably Simple)

For each training step:

© Sample data point xo from dataset

@ Sample random timestep t ~ Uniform(1, T)
@ Sample random noise € ~ N(0,1)

@ Create noisy version: x; = /&:xg + /1 — are
@ Predict noise: € = €p(x¢, t)

@ Minimize MSE: L = ||e — €|

That's it! Just predict the noise you added

Sampling: Generating Images

To generate a new image:

@ Start with pure noise: x7 ~ N(0,1)
Q@ Fort=T7,T—-1,...,1
® Predict noise: € = €g(x¢, t)
® Compute mean: p = \/% (xt - %é)
® Sample z~ N(0,1)ift > 1, elsez=10
Update: x;—1 = p + 02

© Return xg

Intuition:

m At each step: predict and remove noise
m Add small random noise for stochasticity (except last step)

m Gradually reveal the image by following the score

From Self-Supervision to Creativity

A puzzle emerges:

m Diffusion models learn to denoise images (self-supervised)
m They're trained to predict noise as accurately as possible

m Yet they generate novel, creative images not in training data

The apparent contradiction:

@ Perfect learning — learns ideal score function exactly
@ Ideal score function — perfectly reverses forward process
© Perfect reversal — only generates memorized training examples

© But we observe: Creative, novel outputs!

The Central Puzzle

Question: How do diffusion models produce creative outputs?

Novel combinations not in training data?

The Paradox:

If model perfectly learns ideal score function on finite dataset, it can only
memorize training data!

Why? For finite dataset D = {x(!), ... x(M}:

pe(x) = NZNM\FX (1 —a))

As t — 0, posterior concentrates on nearest training image

Perfect training = only memorization

Again, where does creativity come from?

Creativity as Structured Failure

Theoretical Insight: Creativity arises because model fails to learn ideal score
Crucially: This failure is structured by inductive biases!

For CNN-based U-Net, two biases are key:

@ Locality: Finite receptive fields
® Score at pixel (i,) depends only on local neighborhood
® Cannot coordinate globally instantaneously
® Connects to self-supervision: Each patch makes independent denoising
decisions
@ Equivariance: Weight sharing (Lecture 4!)
® CNNs treat different locations similarly
® Translation invariance
® Connects to self-supervision: Denoising strategy learned on one patch
applies everywhere

These architectural constraints prevent implementing an “ldeal Score
Machine”

Result: The model denoises locally, composing globally novel mosaics.

The Simplest Example: Black and White Images

Training set: Only 2 images (all black, all white)

Generated:
Local

Training: . decisions . I

All Black All White Novel! Novel! Novel!

Exponentially many novel samples! (approximately 2V for N x N image)
How? Each pixel independently decides its color based on local neighborhood

Local consistency: majority color in patch = center pixel

The Mechanism: Patch Mosaics

What happens instead of memorization:

@ Local Bayesian Inference:
® Each pixel estimates local score using only nearby info
® “Which training patch do | most resemble?”
@ Mixing and Matching:
® Model doesn't memorize whole images
® Composes patches from different training images
© Locally Consistent, Globally Novel:
® Every small patch looks realistic (matches training)
® Overall combination is new (never seen)
® Combinatorial creativity!

Coarse-to-Fine Generation

Important empirical observation:

Effective receptive field shrinks during reverse process

Early (t =~ T) Late (t =~ 0)

eneration proceeds

L ive fi
Global structure Fine details

wy
<

Strategy:

m Early: Large patches set global structure (object type, layout)
m Late: Small patches add fine details (textures, edges)

Explaining Spatial Inconsistencies
Famous diffusion “errors”:

m Hands with wrong number of fingers
m Clothing with incorrect number of arms

m Bifurcated shoes or multiple legs on pants

Mechanistic explanation: Excessive locality at late times (t < 0.3)

m Receptive field < 5 pixels
m Different parts of image cannot coordinate
m Each region independently decides “this should be a finger”

m Result: Too many fingers!

This is not a bug—it's a fundamental consequence
of the local score approximation that enables creativity

It’s a trade-off!

Connection to Lecture 6: U-Net Returns!

Recall from Lecture 6: U-Net for image segmentation

Perfect for diffusion because:

m Spatial structure: Preserves image layout

m Multi-scale: Handles coarse and fine details

m Skip connections: Essential for preserving details during denoising
= Image-to-image: Noisy image — noise prediction

Typical architecture: ep(x;, t)

m Input: Noisy image x; + timestep t
m Output: Predicted noise €
= Timestep embedding: Sinusoidal encoding (like Transformers!)

U-Net for Diffusion

Timestep
conditioning

¥ [Comvea ...\ Comves)
2% (U32x32 ¢ | 0, 32x32 | e

sl

Skip connections are crucial: preserve high-frequency details lost in
downsampling

The Challenge: Pixel-Space is Expensive

DDPM works, but:

m 512x512 image = 786,432 pixels
m Need 50-1000 denoising steps
m Running U-Net 1000 times on 512x512 is prohibitive!

Key Observation: Most image information is redundant!

Nearby pixels are highly correlated

Solution: Latent Diffusion

Run diffusion in compressed latent space

Latent Diffusion Models (LDM)

Idea: Use pre-trained VAE to compress images

Process:

High-res
512x512x3
(786K pixels)

VAE
Encoder
€

compress 8 A\

[4

Latent Space

Diffusion here!

VAE
Decoder
D

64x64x4

64 x smaller!
Only 16K latent dims

@ Encode image to latent: z = £(x)

@ Run diffusion on z (much smaller!)
@ Decode back: x = D(z)

D Output

Benefits of Latent Diffusion

Why this is game-changing;:

m Speed: 64x64 latent vs 512x512 pixels

2
® 2% — 64x fewer pixels per step!

® Same quality, dramatically faster
m Memory: Can train on consumer GPUs

® 512x512 diffusion: needs A100 (80GB)
® 64x64 latent: works on RTX 3090 (24GB)

= Quality: Still generate high-res images

® VAE decoder upsamples from latent
® Preserves details surprisingly well

This is what Stable Diffusion uses!

Text Conditioning via Cross-Attention

Challenge: Generate specific content, not random images

Need to condition on text prompts!

Solution: Cross-attention between image and text

“a cat”
CLIP Image Latent
Text Encoder Zt
. Cross-Attention
condition
» ----------- } Q: image
K, V: text

Mechanism: Image patches “query” text to find relevant semantic info

Cross-Attention Mechanism

Recall from Lecture 8: Attention mechanism

Attention(Q, K, V) = softmax <QKT) Vv
)) - \/a

For cross-attention in diffusion:

m Q = Wy - z; (query from noisy image)
B K =Wy - Crext (key from CLIP text)
B V =Wy Cex (value from CLIP text)

Intuition:

"o

When generating cat's ear, image latent “attends to" “cat” in text embedding

Each image region focuses on relevant text concepts

Classifier-Free Guidance (CFG)

Problem: Text conditioning alone may be too weak
Solution: Amplify the conditioning effect!

Training: Randomly drop text 10% of time

m Model learns both €y(xt, t,c) and €g(x¢, t,0)
Sampling: Use guided prediction
€= 69(Xta t, 0) +s- [69(Xt7 t, C) - 69(xt7 t, Q])]
where s > 1 is guidance scale (typically 7.5)

Intuition: Move away from unconditional, toward conditional

Higher s — stronger conditioning but less diversity

Complete Stable Diffusion Pipeline

“a cat wearing Random
" Noise

CLIP
(frozen)

s, (T
3 Cross-Attn
I CFG

(trained)

VAE Dec

(frozen)
512x512
output

Components: CLIP (frozen) 4+ U-Net (trained) + VAE (frozen)

Faster Sampling

Problem: DDPM needs 1000 steps, too slow!

Method Steps Description

DDIM 50-100 Deterministic, skip steps
DPM-Solver 20-50 ODE solver for diffusion
Flow Matching 10-20 Continuous flows
Consistency 1-4 Direct mapping

DDIM: Deterministic sampling with fewer steps

Make sampling deterministic, skip timesteps: 50 steps achieves similar quality

Diffusion Transformers (DiT)

Recent trend: Replace U-Net with Transformer blocks

DiT architecture:

@ Patchify: Split latent into patches (like ViT!)

@ Add embeddings: Position + timestep

© Transformer blocks: Multi-head attention + FFN
@ Unpatchify: Reshape to latent space

Advantages over U-Net:

m Scalability: Easy to scale up
m Long-range dependencies: Global self-attention
m Unified architecture: Same as ViT, BERT, GPT

Results: DiT matches or exceeds U-Net quality with better scaling!

Evaluation Metrics

How do we measure quality?

Metric What it measures Range
FID Distribution similarity ~ Lower better
CLIP Score Text-image alignment Higher better
Human Eval Preference ratings Subjective

FID (Fréchet Inception Distance):

m Compare feature distributions of real vs generated
m Extract features using Inception-v3
m Fit Gaussian, compute Fréchet distance

m Lower FID = closer to real data

What We've Learned: The Journey

1. The Averaging Problem:

m Predicting multiple correlated values — blurring

m Solution: Predict one at a time (auto-regressive)

2. The Insight: Break correlations with noise

m Add independent Gaussian noise to all pixels

m Can predict all simultaneously without averaging!

3. Mathematical Foundation:

m Score function s(x) = Vi log p(x) guides generation
m Denoising = Score matching (Tweedie's formula)
m Training: Just predict noise with MSE loss

What We’ve Learned: The Practice
4. Architecture: U-Net from Lecture 6

m Skip connections preserve details
m Multi-scale processing

m Timestep conditioning

5. Creativity Paradox:

m Perfect learning — memorization
m Creativity from structured failure
m CNN locality + equivariance — patch mosaics

m Coarse-to-fine: large patches (early) to small (late)

6. Stable Diffusion: Making it practical

m Latent diffusion (64x faster)
m Cross-attention for text conditioning

m Classifier-free guidance (amplify conditioning)

Key Takeaways

@ Diffusion revolutionized image generation
® Stable training, high quality, excellent diversity
® Solved problems that plagued GANs

@ Self-supervised learning is key
® No labels needed, just images
® Denoising provides natural training signal

© Architecture matters
® U-Net perfect for image-to-image tasks
® |nductive biases shape creativity
® Future: Transformer-based (DiT)

@ Efficiency through clever design

® Latent space diffusion (64x speedup)
® Cross-attention for conditioning
® (Classifier-free guidance for control

The Generative Al Revolution
From 2020 to 2025:

2020: DDPM introduces stable training

2021: DALL-E shows text-to-image, CLIP enables grounding
2022: Stable Diffusion democratizes (open source!)

2023: Midjourney reaches photorealism, video begins

2024: Sora generates minute-long videos

2025: Multimodal unified models

Applications:

m Art, design, advertising

m Scientific research (proteins, drugs)
m Text-to-video (Sora, Runway)

m Image editing, super-resolution

We're still in the early days!

	Self-Supervised Learning: The Foundation
	Solution 1: Auto-regressive Models
	The Mathematical Foundation: Score Functions
	The Creativity Paradox
	The U-Net Architecture
	Stable Diffusion: Making Diffusion Practical
	Beyond DDPM: Advanced Topics
	Summary

