
Lecture 12.1: Multimodality
Bridging Vision and Language

Heman Shakeri



Where We’ve Been: Separate Modalities

Throughout this course, we’ve treated modalities separately:

Vision (Modules 4-6):
CNNs learned spatial features
Translation invariance
Hierarchical representations
Vision Transformers (ViT)
[Module 10]

Language (Modules 7-10):
RNNs/LSTMs for sequences
Attention mechanisms
Transformers dominate
Self-supervised pretraining

But these lived in separate worlds...



Human Intelligence is Multimodal
Consider how you understand the world:

You see a cat → You think “that’s a
cat”
Someone says “look at that fluffy cat”
→ You know what to look for
You read “a red apple on a wooden
table” → You can visualize it

Your brain seamlessly integrates:
Visual perception
Language understanding
Semantic knowledge

Photo of a cat

Red apple on wooden table

Can AI do the same?



What is Multimodal AI?

Definition: A multimodal model processes and/or generates content across
multiple data modalities (text, images, audio, video) to perform a task

Key Difference from Single-Modal:

Before: Separate CNNs for images, separate Transformers for text
Multimodal: Learn shared structure and alignment between modalities

Learning Analogy (VARK):
Just as humans learn better with Visual, Auditory, Reading/Writing, and
Kinesthetic cues, combining modalities improves:

Robustness
Sample efficiency
Generalization



The Core Challenge

Images and text live in completely different spaces:

Image: 512×512×3 tensor of pixel values
Text: Sequence of discrete tokens

Fundamental Questions:

1 How do we represent both in a common space?
2 How do we learn meaningful correspondences?
3 How do we leverage this for downstream tasks?

The Answer: Joint Embeddings



The Core Idea: Joint Embedding Space
Key Insight: Map different modalities into a shared embedding space where
semantically similar concepts are close together

dim1

dim2

“dog”

Dog Images

“cat”

Cat Images

“car”

Car Images

FarClose

This enables:

Search images using text queries
Generate captions for images
Zero-shot classification



How to Learn Joint Embeddings?

The Challenge: No explicit supervision saying “this image region
corresponds to this word”

We only have:

Images
Captions/descriptions that somehow describe the image
No pixel-level or region-level annotations

The Solution: Contrastive Learning

“Pull similar things together,
push dissimilar things apart”



Contrastive Learning Framework

Training Signal:

Maximize similarity for matching pairs
Minimize similarity for non-matching pairs

Image
Encoder

Image

Text
Encoder

Text

zi ztCompute Similarity



Visualizing the Contrastive Batch
In a batch of N pairs, we compute all pairwise similarities:

Text Embeddings

Im
ag

e
Em

be
dd

in
gs

T1

I1

T2

I2

T3

I3

T4

I4

T5

I5

High Low Low Low Low

Low High Low Low Low

Low Low High Low Low

Low Low Low High Low

Low Low Low Low High

Positive pairs:
matching image-text

Negative pairs:
mismatched

Goal: Maximize the diagonal, minimize the off-diagonal

The InfoNCE loss treats each row as a multi-class classification
This explains why PyTorch uses F.cross_entropy!
Batch size matters: N = 1024 → 1023 negatives per positive



The Contrastive Loss (InfoNCE)

Given a batch of N image-text pairs:
For each image i , we have:

One positive text t+ (the correct caption)
N − 1 negative texts (captions for other images)

Loss Function:

Lcontrastive = − log exp(sim(zi , zt+)/τ)∑N
j=1 exp(sim(zi , ztj )/τ)

where:

zi is the image embedding
zt+ is the matching text embedding

sim(·, ·) = z⊤
i zt

∥zi ∥∥zt ∥ (cosine similarity)
τ is temperature parameter (learnable)



Understanding the Loss
This is a softmax over similarity scores!

Lcontrastive = − log exp(s+/τ)∑N
j=1 exp(sj/τ)

Intuition:

Encourage high probability for correct match
Treat all negatives in batch as contrastive examples
Temperature τ controls the “peakiness” of the distribution

• Small τ : sharp, peaked distribution (hard negatives matter more)
• Large τ : smooth distribution (easier training)

Symmetric Loss:
In practice, we also compute the reverse (text-to-image) loss:

Ltotal = 1
2(Li→t + Lt→i)



Why Contrastive Learning Works

Key Properties:
1 Self-Supervised: No manual annotations needed

• Just image-text pairs from the internet!
• Alt-text, captions naturally occur with images

2 Scalable: Can use massive datasets
• Billions of image-text pairs available online
• More data → better representations

3 Flexible: Learn general-purpose representations
• Not tied to specific classification tasks
• Transfers to many downstream applications

4 Efficient: Batch provides many negatives
• Batch size 1024 → 1023 negatives per positive!
• No need to explicitly mine hard negatives



Seminal paper: CLIP: Contrastive Language-Image
Pre-training

CLIP (Radford et al., 2021) demonstrated the power of contrastive learning
at scale

Key Innovation: Train on 400 million (image, text) pairs from the internet

Training Data:

Scraped from the web
Alt-text from images
Captions from various sources
Naturally noisy but incredibly diverse

No carefully curated dataset needed!
This is the key to scale—use the internet itself as the dataset



CLIP Architecture

Image 1 “A dog”↔

Image 2 “A cat”↔

...

Vision
Transformer
or ResNet

Text
Transformer

Joint Embedding Space

Images Text

Contrastive



CLIP Training Process

Architecture Components:

Image Encoder: Vision Transformer (ViT-B/32, ViT-L/14) or
ResNet-50

• Output: 512-dim or 768-dim embedding
Text Encoder: Transformer (similar to GPT-2)

• 12 layers, 8 attention heads
• Output: 512-dim or 768-dim embedding (same as image)

Training: Contrastive loss on batches of 32,768 pairs!
• Large batch size crucial for performance
• Each example has 32,767 negatives

Result: Joint embedding space where semantically related images and texts
are close



CLIP in 6 Lines (PyTorch)

Simplified Implementation:
1 # z_i, z_t: (N, d) L2-normalized image/text embeddings
2 # tau is learnable temperature parameter
3 logits = (z_i @ z_t.t()) / tau
4 labels = torch.arange(len(z_i), device=logits.device)
5 loss = 0.5 * (F.cross_entropy(logits, labels)
6 + F.cross_entropy(logits.t(), labels))
7 loss.backward()
8 optimizer.step()
9 optimizer.zero_grad()

That’s it! The simplicity is deceptive—the power comes from:

Scale (400M pairs)
Large batch size (32K)
Good encoders (ViT, Transformer)



Zero-Shot Classification with CLIP

Classify images into categories never explicitly seen!

Input Image:

Photo of zebra

Text Prompts:
“A photo of a dog”
“A photo of a cat”
“A photo of a car”
“A photo of a zebra”

Similarity Scores:

dog: 0.12

cat: 0.08

car: 0.03

zebra: 0.77 (Winner!)

Prediction: Zebra

Even though CLIP never saw “zebra”
labels during training, it can match the
visual concept to the text!



Zero-Shot Procedure: Step by Step
For N classes, here’s how it works:

1 Encode the image:

zimg = ImageEncoder(image) ∈ Rd

2 Create text prompts: “A photo of a [class]”
• E.g., “A photo of a dog”, “A photo of a cat”, etc.

3 Encode each text prompt:

z(c)
txt = TextEncoder(promptc) ∈ Rd

4 Compute cosine similarities:

sc =
z⊤

imgz(c)
txt

∥zimg∥∥z(c)
txt ∥

5 Predict the class with highest similarity:

ŷ = arg max
c

sc



Why Zero-Shot Works
Traditional supervised learning:

Train on 1000 ImageNet classes
Can only predict those exact 1000 classes
To add new class: need labeled data + retrain

CLIP’s zero-shot:

Learns general visual concepts (“furry”, “four legs”, “pointed ears”)
Learns language understanding (“cat”, “feline”, “tabby”)
At test time: matches image concepts to text descriptions
Works for classes never seen during training!

Example:

CLIP never trained on “traffic cone” images
But knows what “traffic” and “cone” look like
Can recognize traffic cones by matching to text “traffic cone”



CLIP Performance

Zero-shot CLIP matches or exceeds supervised models:

Dataset ResNet-50 (supervised) CLIP (zero-shot)

ImageNet 76.5% 76.2%
ImageNet-V2 67.8% 70.1%
ObjectNet 47.3% 52.5%

Key Observations:

Matches supervised on ImageNet (trained on!)
Better generalization to new distributions (ImageNet-V2, ObjectNet)
More robust to distribution shift
No task-specific training needed!



Why CLIP Works So Well

Four Key Factors:
1 Scale: 400M image-text pairs ≫ any supervised dataset

• ImageNet has 1.2M images
• CLIP: 333× more data

2 Natural Supervision: Alt-text provides weak but diverse labels
• Rich, natural language descriptions
• Much more information than single class label

3 Flexibility: Text encoder can handle any description
• Not limited to predefined categories
• Can specify fine-grained distinctions

4 Transfer: Joint space enables zero-shot and few-shot learning
• No retraining needed for new tasks
• Just change the text prompts!



Beyond CLIP: Vision-Language Models
CLIP opened the door to a new generation of models

Vision-Language Models (VLMs): Models that can both understand and
generate language about images

Examples:

Flamingo (DeepMind): Few-shot learning for vision-language tasks
BLIP/BLIP-2: Unified vision-language understanding and generation
GPT-4V: GPT-4 with vision capabilities
Gemini: Google’s multimodal model

These go beyond classification:

Detailed image captioning
Visual question answering (VQA)
Visual reasoning
Reading text in images (OCR)



Typical VLM Architecture
Common Pattern: Perception → Adapter → Language

Image

Vision
Encoder

(ViT/CLIP)
Often frozen

Adapter
(Q-Former/
Perceiver)

Trainable!

Text

Text
Tokenizer

Visual tokens

Large Language Model
(processes visual + text tokens)

Often frozen initially

Generated Response



The Adapter: Bridging Vision and Language

Why do we need an adapter?

Problem: ViT outputs 196+ patch tokens (14×14 grid)
• Too many tokens for LLM efficiency
• Different “language” than text tokens

Solution: Adapter compresses and translates
• Reduces 196 tokens → 32-64 “visual tokens”
• Maps visual features to LLM’s input space
• Acts as a learned compression + translation layer

Common Adapter Architectures:

Linear Projection: Simple learned matrix (early VLMs)
Q-Former (BLIP-2): Query-based cross-attention

• 32 learnable query tokens attend to all image patches
• Queries become the compressed visual representation

Perceiver Resampler (Flamingo): Similar to Q-Former



Training Strategy: Freeze and Focus
Efficient VLM Training:

Stage 1: Adapter Pre-training

Freeze both Vision Encoder and LLM
Train only the adapter (1-2% of total params)
Objective: Align visual and text representations
Dataset: Large image-caption pairs (millions)

Stage 2: Instruction Fine-tuning (Optional)

Freeze Vision Encoder
Train Adapter + LLM (or just adapter)
Objective: Follow instructions, VQA, detailed captioning
Dataset: High-quality instruction-following data

Why this works:

Leverages strong pre-trained components
Much cheaper than training from scratch
Typical: Train 10M params instead of 7B+ params



Training Paradigms for VLMs

Common Training Strategies:
1 Contrastive (ITC): Image-Text Contrastive (like CLIP)

• Align global image and text representations
2 Matching (ITM): Image-Text Matching

• Binary classification: does this text describe this image?
• Finer-grained than contrastive loss

3 Generative (Captioning): Language Modeling
• Given image, generate caption autoregressively
• Standard next-token prediction loss

4 Instruction Following: Task-specific fine-tuning
• VQA: answer questions about images
• Instruction following: “describe the objects in this image”

Most VLMs use a “training cocktail” combining multiple objectives



Evaluation: How Good are VLMs?

Standard Benchmarks:

Task Metric

Image-Text Retrieval Recall@K (R@1, R@5, R@10)
Image Captioning CIDEr, BLEU, METEOR
VQA Accuracy on question-answer pairs
Visual Reasoning Compositional understanding (GQA, CLEVR)

Recent Focus: Compositional Understanding

Can model understand “a red car next to a blue house”?
Not just objects, but relationships and attributes
Challenging—requires fine-grained grounding



What Can Modern VLMs Do?
Example 1: Detailed Visual Understanding

Complex outdoor scene

Model Output:
“The image shows a grey tabby cat with
green eyes sitting on a weathered wooden
fence. The fence appears to be made of
cedar planks. In the background, there’s
a garden with blooming roses and what
looks like a shed. The lighting suggests
it’s golden hour, with warm sunlight
casting long shadows.”

Beyond simple labels:

Fine-grained attributes (“grey tabby”, “green eyes”)
Material recognition (“weathered wooden”, “cedar planks”)
Spatial reasoning (“in the background”)
Lighting analysis (“golden hour”)



What Can Modern VLMs Do?

Example 2: Meme Understanding

Distracted boyfriend meme

User: “Explain this meme”
Model:
“This is the ’Distracted Boyfriend’ meme. It
shows a man walking with his girlfriend but
turning to look at another woman. The
girlfriend looks upset. The meme is used to
represent being distracted by something
new/attractive while neglecting something
you already have. The format typically labels
the three people to represent different
concepts in a humorous comparison.”

Capabilities demonstrated:

Cultural knowledge (recognizing meme format)
Emotional recognition (girlfriend is upset)
Abstract reasoning (metaphorical meaning)



What Can Modern VLMs Do?

Additional Capabilities:

OCR + Understanding: Read text and understand context
• “What does this sign say and what does it mean?”

Spatial Reasoning: “The ball is to the left of the box”
• Understand 3D layouts from 2D images

Counting: “How many objects are in this image?”
• Still challenging but improving rapidly

Visual Chain-of-Thought: Multi-step reasoning
• “First I see the car is damaged. The damage appears on the driver’s side.

Based on the angle, it was likely a side-impact collision...”
Multimodal Dialogue: Back-and-forth conversation

• “Can you describe the person on the left? Now compare them to the
person on the right.”

From classification to genuine visual understanding!



Real-World Applications

Multimodal AI is already deployed:

Healthcare:
• Radiology reports + medical images for diagnosis
• Clinical notes + scans for treatment planning

E-commerce:
• Visual search: upload image, find similar products
• Automatic product tagging from images
• Price prediction from images + descriptions

Accessibility:
• Image descriptions for visually impaired users
• Real-time scene understanding for navigation

Content Moderation:
• Understanding context (image + text) for harmful content
• Better than either modality alone



Scientific Applications

Multimodal models in research:

Microscopy: Cell images + gene expression data
Astronomy: Telescope images + spectral data
Climate Science: Satellite imagery + meteorological data
Materials Science: Microscope images + chemical composition
Robotics: Visual perception + natural language commands

The Pattern:
Most real-world problems involve multiple modalities!
Unimodal models leave information on the table



Challenges and Limitations
1. Counting is Hard

Model: “The person is showing 6 fingers”
Actual: 5 fingers

2. Fine-grained Spatial

User: “Is the red cube on the blue cube?”
Model struggles with precise spatial
relationships

3. Compositionality

Distinguishing “red apple + green banana”
from “green apple + red banana” is still
challenging

4. Small Text Recognition

Models struggle with fine-grained OCR
(Optical Character Recognition)



Challenges: Beyond Technical

Data and Bias Issues:

1 Data Quality:
• Web-scraped captions are often noisy or incorrect
• Many captions incomplete (“a dog” vs detailed description)
• Harmful/toxic content in training data

2 Bias and Fairness:
• Training data biases get amplified
• Stereotypical associations (gender, race, occupation)
• Example: “CEO” query → predominantly male images
• Western-centric representations dominate

3 Robustness:
• Models can be fooled by adversarial patches
• Performance degrades on out-of-distribution images
• Sensitive to image quality and resolution



Ethical Considerations

Key Concerns:

Privacy:
• Models trained on billions of images from the web
• Many contain people without consent
• Can models “remember” training data?

Copyright:
• Training on copyrighted images and text
• Who owns the outputs?
• Legal frameworks still evolving

Dual Use:
• Surveillance applications
• Deepfake creation
• Misinformation at scale

Bias Amplification:
• Models perpetuate societal biases
• Example: “CEO” → mostly male
• Can reinforce harmful stereotypes



What We’ve Learned: Multimodality

Core Concepts:
1 Joint Embeddings: Map different modalities to shared space

• Enables cross-modal understanding
2 Contrastive Learning: Self-supervised training

• Pull similar pairs together, push apart dissimilar
• InfoNCE loss: softmax over similarities

3 CLIP: Breakthrough at scale
• 400M image-text pairs
• Zero-shot classification
• Strong transfer learning

4 VLMs: Beyond classification
• Captioning, VQA, reasoning
• Combining vision encoder + LLM



Key Takeaways

1 Multimodal AI mimics human cognition
• We naturally integrate visual and linguistic information
• Combining modalities improves robustness and generalization

2 Contrastive learning is powerful and scalable
• Self-supervised training on massive datasets
• No need for expensive manual annotations

3 Zero-shot capabilities are transformative
• Models can handle tasks they weren’t explicitly trained for
• More flexible and adaptable than supervised models

4 The future is multimodal
• Most real-world problems involve multiple modalities
• Single-modality models are increasingly limiting



The Multimodal Future

Emerging Trends:

More Modalities: Vision + Language + Audio + Video
Unified Architectures: Single model for all modalities
Embodied AI: Robots that see, hear, and understand language
Interactive Systems: Back-and-forth visual dialogue

But alongside multimodality,
another revolution is happening:

Generative AI

Next: Lecture 12.2 - Generative AI and Diffusion Models


	The Multimodal Vision
	Joint Embeddings and Contrastive Learning
	CLIP: Contrastive Language-Image Pre-training
	Vision-Language Models
	Applications and Impact
	Summary and Looking Ahead

