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Where We’ve Been: Separate Modalities

Throughout this course, we’ve treated modalities separately:

Vision (Modules 4-6): Language (Modules 7-10):
m CNNs learned spatial features m RNNs/LSTMs for sequences
m Translation invariance = Attention mechanisms
m Hierarchical representations m Transformers dominate
m Vision Transformers (ViT) m Self-supervised pretraining
[Module 10]

But these lived in separate worlds...



Human Intelligence is Multimodal

Consider how you understand the world:

m You see a cat — You think “that’s a
cat”

m Someone says “look at that fluffy cat”
— You know what to look for

m You read “a red apple on a wooden
table” — You can visualize it

Your brain seamlessly integrates:
m Visual perception
m Language understanding

m Semantic knowledge

Can Al do the

Red apple on wooden table

same”?



What is Multimodal Al?

Definition: A multimodal model processes and/or generates content across
multiple data modalities (text, images, audio, video) to perform a task

Key Difference from Single-Modal:

m Before: Separate CNNs for images, separate Transformers for text

m Multimodal: Learn shared structure and alignment between modalities

Learning Analogy (VARK):

Just as humans learn better with Visual, Auditory, Reading/Writing, and
Kinesthetic cues, combining modalities improves:

= Robustness

m Sample efficiency

m Generalization



The Core Challenge

Images and text live in completely different spaces:

m Image: 512x512x3 tensor of pixel values

m Text: Sequence of discrete tokens

Fundamental Questions:

@ How do we represent both in a common space?
@ How do we learn meaningful correspondences?

© How do we leverage this for downstream tasks?

The Answer: Joint Embeddings



The Core Idea: Joint Embedding Space

Key Insight: Map different modalities into a shared embedding space where
semantically similar concepts are close together

di mp2
Dog Images Cat Images

0p€
og” _ _ Far ® 9

cat’

o “car”
([

Car Images

dim1

This enables:

m Search images using text queries
m Generate captions for images
m Zero-shot classification



How to Learn Joint Embeddings?

The Challenge: No explicit supervision saying “this image region
corresponds to this word"
We only have:

= Images
m Captions/descriptions that somehow describe the image

m No pixel-level or region-level annotations

The Solution: Contrastive Learning

“Pull similar things together,
push dissimilar things apart”



Contrastive Learning Framework

Training Signal:

m Maximize similarity for matching pairs

m Minimize similarity for non-matching pairs
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Visualizing the Contrastive Batch

In a batch of N pairs, we compute all pairwise similarities:

Text Embeddings
T T T3 Ts Ts

{ Positive pairs:
matching image-text

e Negative pairs:
mismatched

Image Embeddings

Goal: Maximize the diagonal, minimize the off-diagonal

m The InfoNCE loss treats each row as a multi-class classification
m This explains why PyTorch uses F.cross_entropy!
m Batch size matters: N = 1024 — 1023 negatives per positive



The Contrastive Loss (InfoNCE)

Given a batch of N image-text pairs:

For each image i, we have:

m One positive text t* (the correct caption)

m N — 1 negative texts (captions for other images)

Loss Function:

exp(sim(z;,z¢+)/7)

SN exp(sim(z;, 2,,)/7)

Econtrastive = - IOg

where:

m z; is the image embedding
m z;+ is the matching text embedding
Z-TZ

m sim(-,-) = EANER (cosine similarity)

m 7 is temperature parameter (learnable)



Understanding the Loss

This is a softmax over similarity scores!

exp(s*/7)
Sy exp(si/7)

Lcontrastive =—I

Intuition:

m Encourage high probability for correct match
m Treat all negatives in batch as contrastive examples

m Temperature 7 controls the “peakiness” of the distribution

® Small 7: sharp, peaked distribution (hard negatives matter more)
® Large 7: smooth distribution (easier training)

Symmetric Loss:

In practice, we also compute the reverse (text-to-image) loss:

1
Liotal = i(ﬁi—n + Lisi)



Why Contrastive Learning Works

Key Properties:

@ Self-Supervised: No manual annotations needed
® Just image-text pairs from the internet!
® Alt-text, captions naturally occur with images
@ Scalable: Can use massive datasets

® Billions of image-text pairs available online
® More data — better representations

© Flexible: Learn general-purpose representations

® Not tied to specific classification tasks
® Transfers to many downstream applications

@ Efficient: Batch provides many negatives

® Batch size 1024 — 1023 negatives per positive!
® No need to explicitly mine hard negatives



Seminal paper: CLIP: Contrastive Language-lmage
Pre-training

CLIP (Radford et al., 2021) demonstrated the power of contrastive learning
at scale

Key Innovation: Train on 400 million (image, text) pairs from the internet

Training Data:

m Scraped from the web
m Alt-text from images
m Captions from various sources

m Naturally noisy but incredibly diverse

No carefully curated dataset needed!

This is the key to scale—use the internet itself as the dataset



CLIP Architecture
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CLIP Training Process

Architecture Components:

= Image Encoder: Vision Transformer (ViT-B/32, ViT-L/14) or
ResNet-50

® QOutput: 512-dim or 768-dim embedding
m Text Encoder: Transformer (similar to GPT-2)

® 12 layers, 8 attention heads
® Qutput: 512-dim or 768-dim embedding (same as image)

m Training: Contrastive loss on batches of 32,768 pairs!

® |arge batch size crucial for performance
® Each example has 32,767 negatives

Result: Joint embedding space where semantically related images and texts
are close
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CLIP in 6 Lines (PyTorch)

Simplified Implementation:

# z_i, z_t: (N, d) L2-normalized image/text embeddings
# tau is learnable temperature parameter
logits = (z_i @ z_t.t()) / tau
labels = torch.arange(len(z_i), device=logits.device)
loss = 0.5 * (F.cross_entropy(logits, labels)

+ F.cross_entropy(logits.t(), labels))
loss.backward()
optimizer.step()
optimizer.zero_grad()

That’s it! The simplicity is deceptive—the power comes from:

m Scale (400M pairs)
m Large batch size (32K)

m Good encoders (ViT, Transformer)




Zero-Shot Classification with CLIP

Classify images into categories never explicitly seen!

Input Image:

Photo of zebra

Text Prompts:
m "“A photo of a dog”
m “A photo of a cat”
m “A photo of a car”

m “A photo of a zebra”

Similarity Scores:

zebra: 0.77 (Winner!)

ar: 0.0!

dog: 0.12

Prediction: Zebra

Even though CLIP never saw “zebra”
labels during training, it can match the
visual concept to the text!



Zero-Shot Procedure: Step by Step

For N classes, here’s how it works:

@ Encode the image:
Zimg = ImageEncoder(image) € R

@ Create text prompts: “A photo of a [class]”

(LTI

® E.g., “A photo of a dog"”, “A photo of a cat”, etc.
© Encode each text prompt:

2(&) = TextEncoder(prompt,) € R9

@ Compute cosine similarities:

z] 2
Zimgll 122

@ Predict the class with highest similarity:

A

¥ = argmax s,
C



Why Zero-Shot Works

Traditional supervised learning:

m Train on 1000 ImageNet classes
m Can only predict those exact 1000 classes
m To add new class: need labeled data + retrain

CLIP’s zero-shot:

m Learns general visual concepts (“furry”, “four legs”, “pointed ears")
m Learns language understanding (“cat”, “feline”, “tabby")

m At test time: matches image concepts to text descriptions

m Works for classes never seen during training!

Example:

m CLIP never trained on “traffic cone” images
m But knows what “traffic” and “cone” look like

m Can recognize traffic cones by matching to text “traffic cone”



CLIP Performance

Zero-shot CLIP matches or exceeds supervised models:

Dataset ResNet-50 (supervised) CLIP (zero-shot)
ImageNet 76.5% 76.2%
ImageNet-V2 67.8% 70.1%
ObjectNet 47.3% 52.5%

Key Observations:

m Matches supervised on ImageNet (trained on!)
m Better generalization to new distributions (ImageNet-V2, ObjectNet)
m More robust to distribution shift

m No task-specific training needed!



Why CLIP Works So Well

Four Key Factors:

@ Scale: 400M image-text pairs > any supervised dataset

® |ImageNet has 1.2M images
® CLIP: 333x more data

@ Natural Supervision: Alt-text provides weak but diverse labels

® Rich, natural language descriptions
® Much more information than single class label

@ Flexibility: Text encoder can handle any description
® Not limited to predefined categories
® Can specify fine-grained distinctions
@ Transfer: Joint space enables zero-shot and few-shot learning

® No retraining needed for new tasks
® Just change the text prompts!



Beyond CLIP: Vision-Language Models

CLIP opened the door to a new generation of models

Vision-Language Models (VLMs): Models that can both understand and
generate language about images

Examples:

Flamingo (DeepMind): Few-shot learning for vision-language tasks
BLIP/BLIP-2: Unified vision-language understanding and generation
GPT-4V: GPT-4 with vision capabilities

Gemini: Google's multimodal model

These go beyond classification:

m Detailed image captioning

m Visual question answering (VQA)
m Visual reasoning

m Reading text in images (OCR)



Typical VLM Architecture

Common Pattern: Perception — Adapter — Language
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The Adapter: Bridging Vision and Language
Why do we need an adapter?

m Problem: ViT outputs 196+ patch tokens (14x14 grid)

® Too many tokens for LLM efficiency
® Different “language” than text tokens

m Solution: Adapter compresses and translates

® Reduces 196 tokens — 32-64 “visual tokens”
® Maps visual features to LLM's input space
® Acts as a learned compression + translation layer

Common Adapter Architectures:

m Linear Projection: Simple learned matrix (early VLMs)
= Q-Former (BLIP-2): Query-based cross-attention

® 32 learnable query tokens attend to all image patches
® Queries become the compressed visual representation

m Perceiver Resampler (Flamingo): Similar to Q-Former



Training Strategy: Freeze and Focus

Efficient VLM Training:

Stage 1: Adapter Pre-training

m Freeze both Vision Encoder and LLM

m Train only the adapter (1-2% of total params)
m Objective: Align visual and text representations
m Dataset: Large image-caption pairs (millions)

Stage 2: Instruction Fine-tuning (Optional)

m Freeze Vision Encoder

m Train Adapter + LLM (or just adapter)

m Objective: Follow instructions, VQA, detailed captioning
m Dataset: High-quality instruction-following data

Why this works:

m Leverages strong pre-trained components
m Much cheaper than training from scratch
m Typical: Train 10M params instead of 7B+ params



Training Paradigms for VLMs

Common Training Strategies:

@ Contrastive (ITC): Image-Text Contrastive (like CLIP)
® Align global image and text representations
@ Matching (ITM): Image-Text Matching

® Binary classification: does this text describe this image?
® Finer-grained than contrastive loss

© Generative (Captioning): Language Modeling

® Given image, generate caption autoregressively
® Standard next-token prediction loss

@ Instruction Following: Task-specific fine-tuning

® VQA: answer questions about images
® [nstruction following: “describe the objects in this image”

Most VLMs use a “training cocktail” combining multiple objectives



Evaluation: How Good are VLMs?

Standard Benchmarks:

Task Metric

Image-Text Retrieval RecalloK (R@1, R@5, R@10)

Image Captioning CIDEr, BLEU, METEOR

VQA Accuracy on question-answer pairs

Visual Reasoning Compositional understanding (GQA, CLEVR)

Recent Focus: Compositional Understanding

m Can model understand “a red car next to a blue house"?
m Not just objects, but relationships and attributes

m Challenging—requires fine-grained grounding



What Can Modern VLMs Do?
Example 1: Detailed Visual Understanding

Model Output:

“The image shows a grey tabby cat with
green eyes sitting on a weathered wooden
fence. The fence appears to be made of
cedar planks. In the background, there’s
a garden with blooming roses and what
looks like a shed. The lighting suggests
it's golden hour, with warm sunlight
casting long shadows.”

Complex outdoor scene

Beyond simple labels:

m Fine-grained attributes (“grey tabby”, “green eyes”)
m Material recognition (“weathered wooden”, “cedar planks”)
m Spatial reasoning (“in the background”)



What Can Modern VLMs Do?
Example 2: Meme Understanding

User: “Explain this meme”

Model:

“This is the 'Distracted Boyfriend" meme. It

shows a man walking with his girlfriend but

turning to look at another woman. The

girlfriend looks upset. The meme is used to

represent being distracted by something

new/attractive while neglecting something

Distracted boyfriend meme you already have. The format typically labels
the three people to represent different

concepts in a humorous comparison.”

Capabilities demonstrated:

m Cultural knowledge (recognizing meme format)
m Emotional recognition (girlfriend is upset)

m Abstract reasoning (metaphorical meaning)



What Can Modern VLMs Do?

Additional Capabilities:

m OCR + Understanding: Read text and understand context
® “What does this sign say and what does it mean?”

m Spatial Reasoning: “The ball is to the left of the box"
® Understand 3D layouts from 2D images

m Counting: "How many objects are in this image?”
® Still challenging but improving rapidly

m Visual Chain-of-Thought: Multi-step reasoning

® “First | see the car is damaged. The damage appears on the driver’s side.
Based on the angle, it was likely a side-impact collision...”

m Multimodal Dialogue: Back-and-forth conversation

® “Can you describe the person on the left? Now compare them to the
person on the right.”

From classification to genuine visual understanding!



Real-World Applications

Multimodal Al is already deployed:

= Healthcare:

® Radiology reports + medical images for diagnosis
® Clinical notes + scans for treatment planning

m E-commerce:

® Visual search: upload image, find similar products
® Automatic product tagging from images
® Price prediction from images + descriptions

m Accessibility:

® |mage descriptions for visually impaired users
® Real-time scene understanding for navigation

m Content Moderation:

® Understanding context (image + text) for harmful content
® Better than either modality alone



Scientific Applications

Multimodal models in research:

Microscopy: Cell images + gene expression data
Astronomy: Telescope images + spectral data
Climate Science: Satellite imagery + meteorological data

Materials Science: Microscope images + chemical composition

Robotics: Visual perception + natural language commands

The Pattern:
Most real-world problems involve multiple modalities!

Unimodal models leave information on the table



Challenges and Limitations

1. Counting is Hard 3. Compositionality

! {

Model: “The person is showing 6 fingers” Distinguishing “red apple + green banana”
Actual: 5 fingers from “green apple + red banana” is still
challenging

2. Fine-grained Spatial
4. Small Text Recognition

User: “Is the red cube on the blue cube?”
Model struggles with precise spatial Models struggle with fine-grained OCR
relationships (Optical Character Recognition)



Challenges: Beyond Technical

Data and Bias Issues:

@ Data Quality:

® \Web-scraped captions are often noisy or incorrect

® Many captions incomplete (“a dog” vs detailed description)
® Harmful/toxic content in training data

@ Bias and Fairness:

® Training data biases get amplified
Stereotypical associations (gender, race, occupation)

Example: “CEQ" query — predominantly male images
Western-centric representations dominate

© Robustness:

® Models can be fooled by adversarial patches
® Performance degrades on out-of-distribution images
® Sensitive to image quality and resolution



Ethical Considerations

Key Concerns:

m Privacy:
® Models trained on billions of images from the web
® Many contain people without consent
® Can models “remember” training data?
m Copyright:
® Training on copyrighted images and text
® Who owns the outputs?
® | egal frameworks still evolving
m Dual Use:
® Surveillance applications
® Deepfake creation
® Misinformation at scale
m Bias Amplification:
® Models perpetuate societal biases

® Example: “CEO"” — mostly male
® Can reinforce harmful stereotypes



What We've Learned: Multimodality

Core Concepts:

@ Joint Embeddings: Map different modalities to shared space
® Enables cross-modal understanding
@ Contrastive Learning: Self-supervised training

® Pull similar pairs together, push apart dissimilar
® |InfoNCE loss: softmax over similarities

© CLIP: Breakthrough at scale
® 400M image-text pairs
® Zero-shot classification
® Strong transfer learning
@ VLMs: Beyond classification

® Captioning, VQA, reasoning
® Combining vision encoder + LLM



Key Takeaways

@ Multimodal Al mimics human cognition

® We naturally integrate visual and linguistic information
® Combining modalities improves robustness and generalization

@ Contrastive learning is powerful and scalable
® Self-supervised training on massive datasets
® No need for expensive manual annotations
© Zero-shot capabilities are transformative
® Models can handle tasks they weren't explicitly trained for
® More flexible and adaptable than supervised models
Q@ The future is multimodal

® Most real-world problems involve multiple modalities
® Single-modality models are increasingly limiting



The Multimodal Future

Emerging Trends:

More Modalities: Vision + Language + Audio + Video
Unified Architectures: Single model for all modalities
Embodied Al: Robots that see, hear, and understand language

Interactive Systems: Back-and-forth visual dialogue

But alongside multimodality,
another revolution is happening:

Generative Al

Next: Lecture 12.2 - Generative Al and Diffusion Models
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