
Lecture 11.3: Efficient LLM Deployment
Quantization, QLoRA, and Running Models at Home

Heman Shakeri

The Democratization Challenge

From billion-parameter models to your laptop
Topics:

1 The memory bottleneck: Why 7B models need 66+ GB for training
2 Quantization fundamentals: Representing weights with 4 bits instead of

16
3 QLoRA: Fine-tuning 7B models on consumer GPUs (8–12 GB)
4 Hands-on: Fine-tune and deploy models on your machine
5 Trade-offs: Speed, quality, and hardware constraints

Practical Outcome
By the end, you will fine-tune and serve models on consumer hardware!

The Billion-Parameter Reality

Modern language models are remarkably capable but extraordinarily large:
Open models:

Gemma 3: 270M, 2B, 9B, 27B (Apache-2.0)
LLaMA 3.1: 8B, 70B, 405B (Apache-2.0)
Mistral: 7B (Apache-2.0)
Qwen 2.5: 7B, 14B, 72B (Apache-2.0)

Proprietary models:

GPT-4: Rumored 1.7 trillion parameters
Claude 3: Multiple variants (sizes undisclosed)

Question: Can you run these on your laptop? Let us do the math.

Memory Requirements: Just Storing Weights
Each parameter is a number. Standard storage formats:

Format Bits/param Bytes/param 7B model

FP32 (float32) 32 4 28 GB
FP16 (float16) 16 2 14 GB
BF16 (bfloat16) 16 2 14 GB
INT8 8 1 7 GB
INT4 4 0.5 3.5 GB

Example: 7 billion parameters in FP16:
7 × 109 params × 2 bytes/param = 14 GB

This is just the storage cost. Inference requires more memory to hold the
KV-Cache (the “memory" of the conversation), which can be several GBs
itself for long contexts.
Your hardware:

Consumer laptop: 8–16 GB RAM (shared with OS, browser)
RTX 3060/4060 GPU: 8–12 GB VRAM
MacBook Pro M3: 16–32 GB unified memory

Conclusion: A 7B model in FP16 barely fits for inference, definitely not for
training!

What About Smaller Models?

Gemma 3 270M in different precisions:

Format Inference Training (w/ Adam)

FP32 1.08 GB 13 GB
FP16 540 MB 6.5 GB
INT8 270 MB –
INT4 135 MB –

Much more manageable! But what if you want to use larger, more capable
models?
Trade-off:

270M: Fits easily, limited capability
7B: Better capability, needs optimization
70B+: State-of-art capability, requires advanced techniques

Today’s goal: Make 7B models as accessible as 270M models used to be!

Training Makes It Worse

During training, memory requirements explode:

Weights
14 GB

Gradients
14 GB

Optimizer
28 GB

Activations
10+ GB

Total: 66+ GB for 7B model in FP16

Why so much?

Gradients: Same size as weights (14 GB for FP16)
Optimizer states: Adam stores first and second moments in FP32 (28
GB!)
Activations: Stored during forward pass for backpropagation (10+ GB)

This requires enterprise GPUs (A100 80GB, H100 80GB) costing
$10,000–$40,000!

The Challenge and Solution

The Challenge
Goal: Enable researchers and practitioners to:

Run 7B models for inference on 8 GB GPUs
Fine-tune 7B models on 12 GB GPUs
Deploy models on CPUs and consumer hardware

The Solution
Three-pronged approach:

1 Quantization: Fewer bits per parameter
2 Efficient fine-tuning: QLoRA (quantization + LoRA)
3 Optimized serving: Specialized inference engines

Result: Democratize access to powerful LLMs!

The Core Idea

Quantization: Represent weights with fewer bits while preserving
performance
Analogy: Image compression

Raw photo: 24 bits per pixel (16 million colors)
JPEG: Approximate values, much smaller file
Visual quality: Often indistinguishable

For neural networks:

Original weights: FP16 or FP32 (continuous values)
Quantized weights: INT8 or INT4 (discrete levels)
Model quality: Minimal degradation with proper techniques!

Key insight: Neural networks are remarkably robust to reduced precision

How Quantization Works
Basic quantization maps floating-point weights to integers

FP16: continuous values

Quantize

INT4: 16 discrete levels

The quantization formula:
Given floating-point weight w ∈ R, quantize to integer:

wquant = round
(

w − z
s

)
where s = scale, z = zero-point
To reconstruct (dequantize):

ŵ = wquant · s + z

Example: 8-bit Quantization

Task: Quantize weights in range [−0.5, 0.5] to INT8 (256 values)
Steps:
1. Determine range: wmin = −0.5, wmax = 0.5
2. Compute scale:

s = wmax − wmin
28 − 1 = 1.0

255 ≈ 0.00392

3. Quantize w = 0.12:

wquant = round
(

0.12
0.00392

)
= round(30.6) = 31

4. Dequantize:
ŵ = 31 × 0.00392 ≈ 0.1215

Error: |0.12 − 0.1215| = 0.0015 (very small!)

Quantization Strategies

Method Description Bits

PTQ Post-Training Quantization 4–8
QAT Quantization-Aware Training 4–8
Weight-Only Quantize weights, keep activations

FP16
3–4

Weight + Act Quantize both 8

For LLMs, weight-only quantization dominates:

Quantize weights to INT4 (16 values)
Keep activations in FP16 during computation
4× memory reduction with minimal quality loss!

Weight-only works because weights (W) are static and have a nice, stable
distribution. Activations (x) are dynamic (change with every input) and have
large outliers. Quantizing these outliers (e.g., in Wx) is what causes
performance degradation.

NF4: Normal Float 4
Standard INT4 uses uniform spacing: {0, 1, 2, . . . , 15}
But neural network weights follow a normal distribution!

Weight value

Density
Uniform INT4 (equal spacing)

NF4 (information-theoretically optimal)
More levels where
there is more data

NF4 (used in QLoRA): More quantization levels near zero, fewer in tails
This gives better precision where it matters!

Quantization Methods for LLMs

Method Description Use

GPTQ Post-training using Hessian info 3 − 4-bit inference (static quantization)
AWQ Activation-aware (protects salient

weights)
Fast inference

GGUF Format for llama.cpp (CPU/Metal) Laptops, no GPU
bitsandbytes On-the-fly 4/8-bit with NF4 Training (QLoRA) & inference

Bottom line: With 4-bit quantization, the 16-bit model size is reduced by ≈ 4×:
e.g. 70B model: ∼ 140 GB → 41 GB.

Quality Loss: 4-bit QLoRA with NF4 is shown to match 16-bit performance
[Fig2 of QLoRA paper:].

QLoRA

Recall Memory savings for adapters:

Original trainable params: d × k
LoRA trainable params: r(d + k) (typically r = 8 or r = 16)

The problem: Even with LoRA, the 65B model still requires > 780 GB in
16-bit for finetuning!
QLoRA = Quantized base model + LoRA adapters

Pre-trained Model
65B parameters

Frozen

Quantized to
4-bit (NF4)

Memory: 41 GB

LoRA
Query

LoRA
Value
LoRA
FFN

Trainable
BF16

∼ 336 MB

Total: < 48 GB
Fits on a single professional GPU!

QLoRA: Visualizing the Memory Savings

Full Finetuning updates a huge 16-bit model and stores a massive
32-bit Optimizer State.
LoRA reduces the Optimizer State slightly by adding small 16-bit
Adapters, but the base 16-bit model remains the memory bottleneck.
QLoRA fundamentally solves the bottleneck by quantizing the base
model to 4-bit, while retaining the small 16-bit Adapters and using
Paged Optimizers (Paging Flow) to manage the Optimizer State with
the CPU.
Paging is an old memory management scheme that allows a system to
store and retrieve data from secondary storageand the main memory
(RAM) in fixed-size blocks called pages.

QLoRA: Key Innovations
1. 4-bit NormalFloat (NF4): Quantize base to 4 bits optimally

Information-theoretically optimal for normally distributed weights
Better empirical results than 4-bit Integers and 4-bit Floats

2. Double Quantization (DQ): Quantize the quantization constants

Quantization constants are typically 32-bit floats
DQ quantizes these constants, saving an average of
0.37 bits per parameter
Saves ∼ 3 GB for a 65B model

3. Paged Optimizers: Handle memory spikes via unified memory

Uses NVIDIA unified memory for automatic page-to-page transfers
between CPU and GPU
Prevents out-of-memory errors during gradient checkpointing peaks

4. LoRA adapters in BF16: Keep trainable parameters in high precision

The frozen base is 4-bit; the trainable adapters are 16-bit BrainFloat
(BF16)
Training with high precision is critical for stable gradient updates

QLoRA for Gemma 3 270M
Can we use QLoRA for smaller models?
Yes, but it’s overkill!

Method Memory When to Use

Full FT (FP16) 6.5 GB Plenty of VRAM
LoRA (FP16) 4 GB Save some memory
QLoRA (4-bit) 2.5 GB Extreme constraints

For Gemma 3 270M:

Regular LoRA already very efficient
QLoRA adds complexity without much benefit
Only use if you have <4 GB VRAM

Sweet spot for QLoRA: 7B–70B models on consumer GPUs
For larger models (70B+):

70B in 4-bit: ∼35 GB (still needs high-end GPU)
May need model parallelism across multiple GPUs

Beyond Training: Efficient Inference

You’ve fine-tuned your model. Now what?
Deployment requirements:

Low latency (time to first token <100ms)
High throughput (many requests/second)
Memory efficiency (serve multiple users)
Hardware flexibility (GPU, CPU, edge devices)

Challenge: Standard HuggingFace Transformers is not optimized for
production
Solution: Specialized inference engines

Inference Engine Landscape

Engine Specialty Hardware

vLLM High-throughput GPU serving NVIDIA GPU
llama.cpp CPU/edge deployment CPU, Metal, CUDA
MLX-LM Apple Silicon optimization M1/M2/M3
TGI Production-ready API server NVIDIA GPU
TensorRT-LLM Maximum GPU performance NVIDIA GPU

Key innovation across all engines:

Quantization (INT4/INT8)
KV-cache optimization
Batching and scheduling
Kernel fusion and optimization

The Democratization Vision

The Future is Accessible
Three years ago: Running LLMs required million-dollar infrastructure
Today: With the techniques you learned:

Run 7B models on $300 consumer GPUs
Fine-tune on laptops with 16 GB RAM
Deploy on edge devices and phones

Tomorrow: Even more efficient methods will emerge!
Better quantization (sub-4-bit without quality loss)
Sparse models (Mixture-of-Experts at edge)
Hardware-software co-design

Your opportunity: Use these tools to build LLM applications that were
impossible just a few years ago!

Real-World Impact

The techniques you learned today are actively used in production:
Startups: Deploy LLM services without massive GPU clusters
Research labs: Enable more scientists to experiment with large models
Edge AI: Run models on robots, drones, IoT devices
Privacy applications: Keep sensitive data local with on-device inference
Developing regions: Access AI without expensive cloud services

“The best model is not the largest model—
it is the model you can actually deploy and use.”

Further Reading
Core papers:

Dettmers et al. (2023). “QLoRA: Efficient Finetuning of Quantized LLMs”
Frantar et al. (2022). “GPTQ: Accurate Post-Training Quantization for GPT”
Lin et al. (2023). “AWQ: Activation-aware Weight Quantization”
Kwon et al. (2023). “Efficient Memory Management for LLM Serving” (vLLM)
Dettmers et al. (2022). “LLM.int8(): 8-bit Matrix Multiplication”

Tools and frameworks:

vLLM: docs.vllm.ai

llama.cpp: github.com/ggerganov/llama.cpp

AutoAWQ: github.com/casper-hansen/AutoAWQ

MLX: ml-explore.github.io/mlx

bitsandbytes: github.com/TimDettmers/bitsandbytes

PEFT library: huggingface.co/docs/peft

Emerging techniques:

GPTQ-R: Refined GPTQ with better Hessian approximation
QuIP: Quantization with Incoherence Processing (2-bit!)
SpQR: Sparse Quantized Representation
SmoothQuant: Migrate difficulty from activations to weights

	The Memory Problem
	Quantization Fundamentals
	QLoRA: Efficient Fine-Tuning
	Deployment Strategies

