Heman Shakeri



The Democratization Challenge

From billion-parameter models to your laptop

Topics:

@ The memory bottleneck: Why 7B models need 66+ GB for training

@ Quantization fundamentals: Representing weights with 4 bits instead of
16

@ QLoRA: Fine-tuning 7B models on consumer GPUs (8-12 GB)
@ Hands-on: Fine-tune and deploy models on your machine
@ Trade-offs: Speed, quality, and hardware constraints

Practical Outcome

By the end, you will fine-tune and serve models on consumer hardware! J




The Billion-Parameter Reality

Modern language models are remarkably capable but extraordinarily large:

Open models:

Gemma 3: 270M, 2B, 9B, 27B (Apache-2.0)
LLaMA 3.1: 8B, 70B, 405B (Apache-2.0)
Mistral: 7B (Apache-2.0)

Qwen 2.5: 7B, 14B, 72B (Apache-2.0)

Proprietary models:

m GPT-4: Rumored 1.7 trillion parameters

m Claude 3: Multiple variants (sizes undisclosed)

Question: Can you run these on your laptop? Let us do the math.



Memory Requirements: Just Storing Weights

Each parameter is a number. Standard storage formats:

Format Bits/param  Bytes/param 7B model
FP32 (float32) 32 4 28 GB
FP16 (float16) 16 2 14 GB
BF16 (bfloat16) 16 2 14 GB
INT8 8 1 7 GB
INT4 4 0.5 3.5 GB

Example: 7 billion parameters in FP16:
7 x 10° params x 2 bytes/param = 14 GB
This is just the storage cost. Inference requires more memory to hold the

KV-Cache (the “memory" of the conversation), which can be several GBs
itself for long contexts.

Your hardware:

m Consumer laptop: 8-16 GB RAM (shared with OS, browser)
m RTX 3060/4060 GPU: 8-12 GB VRAM
m MacBook Pro M3: 16-32 GB unified memory



What About Smaller Models?

Gemma 3 270M in different precisions:

Format Inference Training (w/ Adam)

FP32 1.08 GB 13 GB
FP16 540 MB 6.5 GB
INT8 270 MB -
INT4 135 MB -

Much more manageable! But what if you want to use larger, more capable
models?

Trade-off:

m 270M: Fits easily, limited capability
m 7B: Better capability, needs optimization
m 70B+: State-of-art capability, requires advanced techniques

Today’s goal: Make 7B models as accessible as 270M models used to be!



Training Makes It Worse

During training, memory requirements explode:

Weights | Gradients| Optimizer| Activations
14 GB 14 GB 28 GB 10+ GB

N L

Total: 66+ GB for 7B model in FP16

Why so much?

m Gradients: Same size as weights (14 GB for FP16)

m Optimizer states: Adam stores first and second moments in FP32 (28
GB!)

m Activations: Stored during forward pass for backpropagation (10+ GB)

This requires enterprise GPUs (A100 80GB, H100 80GB) costing
$10,000-$40,000!



The Challenge and Solution

The Challenge

Goal: Enable researchers and practitioners to:
m Run 7B models for inference on 8 GB GPUs
m Fine-tune 7B models on 12 GB GPUs

m Deploy models on CPUs and consumer hardware

The Solution

Three-pronged approach:
© Quantization: Fewer bits per parameter
@ Efficient fine-tuning: QLoRA (quantization + LoRA)
© Optimized serving: Specialized inference engines

Result: Democratize access to powerful LLMs!



The Core lIdea

Quantization: Represent weights with fewer bits while preserving
performance

Analogy: Image compression

m Raw photo: 24 bits per pixel (16 million colors)
m JPEG: Approximate values, much smaller file
m Visual quality: Often indistinguishable

For neural networks:

m Original weights: FP16 or FP32 (continuous values)
m Quantized weights: INT8 or INT4 (discrete levels)
m Model quality: Minimal degradation with proper techniques!

Key insight: Neural networks are remarkably robust to reduced precision



How Quantization Works

Basic quantization maps floating-point weights to integers

FP16: continuous values

A
+

Quantize

- — — — — =
INT4: 16 discrete levels

The quantization formula:

Given floating-point weight w € R, quantize to integer:

w—z
Wquant = round
s

where s = scale, z = zero-point

To reconstruct (dequantize):

W = Wquant * S+ Z



Example: 8-bit Quantization

Task: Quantize weights in range [—0.5,0.5] to INT8 (256 values)
Steps:
1. Determine range: wpin = —0.5, Wnax = 0.5

2. Compute scale:

Wmax — Wmin 1.0
= ———— = — =~ 0.00392
° 2% _1 255

3. Quantize w = 0.12:

0.12
0.00392

Wquant = round ( > = round(30.6) = 31

4. Dequantize:
w = 31 x 0.00392 ~ 0.1215

Error: [0.12 — 0.1215| = 0.0015 (very small!)



Quantization Strategies

Method Description Bits

PTQ Post-Training Quantization 4-8

QAT Quantization-Aware Training 4-8

Weight-Only Quantize weights, keep activations 3-4
FP16

Weight + Act Quantize both 8

For LLMs, weight-only quantization dominates:

= Quantize weights to INT4 (16 values)
m Keep activations in FP16 during computation

m 4x memory reduction with minimal quality loss!

Weight-only works because weights (/) are static and have a nice, stable
distribution. Activations (x) are dynamic (change with every input) and have
large outliers. Quantizing these outliers (e.g., in W,) is what causes
performance degradation.



NF4: Normal Float 4
Standard INT4 uses uniform spacing: {0,1,2,...,15}
But neural network weights follow a normal distribution!

Uniform INT4 (equal spacing)
I I I | Dersity | I I

Weight value

NF4 (information-theoretically optimal)
More levels where
there is more data

NF4 (used in QLoRA): More quantization levels near zero, fewer in tails

This gives better precision where it matters!



Quantization Methods for LLMs

Method Description Use
GPTQ Post-training using Hessian info 3 — 4-bit inference (static quantiz:
AWQ Activation-aware  (protects  salient  Fast inference
weights)
GGUF Format for llama.cpp (CPU/Metal) Laptops, no GPU
bitsandbytes ~ On-the-fly 4/8-bit with NF4 Training (QLoRA) & inference

Bottom line: With 4-bit quantization, the 16-bit model size is reduced by ~ 4x:
e.g. 70B model: ~ 140 GB — 41 GB.

Quality Loss: 4-bit QLoRA with NF4 is shown to match 16-bit performance
[Fig2 of QLoRA paper:].

o5 | 4-bit LLaMA /
o
Data type

— Float
—— NFloat
—— NFloat + DQ

Mean zeroshot accuracy
e o o o o o
2 2 & @ & @
2 23 2 2 & 3

°
3
8

2

10°
Total model bits



QLoRA

Recall Memory savings for adapters:

m Original trainable params: d x k
m LoRA trainable params: r(d + k) (typically r =8 or r = 16)

The problem: Even with LoRA, the 65B model still requires > 780 GB in
16-bit for finetuning!

QLoRA = Quantized base model + LoRA adapters

H LORA Trainable
Pre-trained Model S i
65B parameters
Frozen \ LoRA
. 1 Value
Quantized to
4-bit (NF4) LoRA
FFN
Memory: 41 GB ~ 336 MB

Total: <48 GB
Fits on a single professional GPU!




QLoRA: Visualizing the Memory Savings

Full Finetuning LoRA QLoRA
(No Adapters)

D00 86 00
TP e
(16 bit) O D D D O D
1l ¢33 23S
= G Y G ==z
16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow =g

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

m Full Finetuning updates a huge 16-bit model and stores a massive
32-bit Optimizer State.

m LoRA reduces the Optimizer State slightly by adding small 16-bit
Adapters, but the base 16-bit model remains the memory bottleneck.

m QLoRA fundamentally solves the bottleneck by quantizing the base
model to 4-bit, while retaining the small 16-bit Adapters and using
Paged Optimizers (Paging Flow) to manage the Optimizer State with
the CPU.

m Paging is an old memory management scheme that allows a system to
store and retrieve data from secondary storageand the main memory



QLoRA: Key Innovations

1. 4-bit NormalFloat (NF4): Quantize base to 4 bits optimally

m Information-theoretically optimal for normally distributed weights
m Better empirical results than 4-bit Integers and 4-bit Floats

2. Double Quantization (DQ): Quantize the quantization constants

m Quantization constants are typically 32-bit floats

m DQ quantizes these constants, saving an average of
0.37 bits per parameter

m Saves ~ 3 GB for a 65B model

3. Paged Optimizers: Handle memory spikes via unified memory

m Uses NVIDIA unified memory for automatic page-to-page transfers
between CPU and GPU
m Prevents out-of-memory errors during gradient checkpointing peaks

4. LoRA adapters in BF16: Keep trainable parameters in high precision

m The frozen base is 4-bit; the trainable adapters are 16-bit BrainFloat
(BF16)
m Training with high precision is critical for stable gradient updates



QLoRA for Gemma 3 270M

Can we use QLoRA for smaller models?

Yes, but it’s overkill!

Method Memory When to Use
Full FT (FP16) 6.5 GB Plenty of VRAM
LoRA (FP16) 4 GB Save some memory

QLoRA (4-bit) 2.5 GB  Extreme constraints

For Gemma 3 270M:

m Regular LoRA already very efficient

m QLoRA adds complexity without much benefit

m Only use if you have <4 GB VRAM
Sweet spot for QLoRA: 7B-70B models on consumer GPUs
For larger models (70B+):

m 70B in 4-bit: ~35 GB (still needs high-end GPU)
m May need model parallelism across multiple GPUs



Beyond Training: Efficient Inference

You’ve fine-tuned your model. Now what?

Deployment requirements:

Low latency (time to first token <100ms)

Memory efficiency (serve multiple users)

m
m High throughput (many requests/second)

|

= Hardware flexibility (GPU, CPU, edge devices)

Challenge: Standard HuggingFace Transformers is not optimized for
production

Solution: Specialized inference engines



Inference Engine Landscape

Engine Specialty Hardware

vLLM High-throughput GPU serving NVIDIA GPU
llama.cpp CPU/edge deployment CPU, Metal, CUDA
MLX-LM Apple Silicon optimization M1/M2/M3

TGI Production-ready API server NVIDIA GPU
TensorRT-LLM  Maximum GPU performance NVIDIA GPU

Key innovation across all engines:

m Quantization (INT4/INT8)

m KV-cache optimization

m Batching and scheduling

m Kernel fusion and optimization



The Democratization Vision

The Future is Accessible

Three years ago: Running LLMs required million-dollar infrastructure
Today: With the techniques you learned:

m Run 7B models on $300 consumer GPUs
m Fine-tune on laptops with 16 GB RAM
m Deploy on edge devices and phones

Tomorrow: Even more efficient methods will emerge!
m Better quantization (sub-4-bit without quality loss)
m Sparse models (Mixture-of-Experts at edge)

m Hardware-software co-design

Your opportunity: Use these tools to build LLM applications that were
impossible just a few years ago!



Real-World Impact

The techniques you learned today are actively used in production:
Startups: Deploy LLM services without massive GPU clusters

Research labs: Enable more scientists to experiment with large models
Edge Al: Run models on robots, drones, loT devices

Privacy applications: Keep sensitive data local with on-device inference

Developing regions: Access Al without expensive cloud services

“The best model is not the largest model—
it is the model you can actually deploy and use.”



Further Reading

Core papers:

Dettmers et al. (2023). “QLoRA: Efficient Finetuning of Quantized LLMs"
Frantar et al. (2022). “GPTQ: Accurate Post-Training Quantization for GPT"
Lin et al. (2023). “AWQ: Activation-aware Weight Quantization”

Kwon et al. (2023). “Efficient Memory Management for LLM Serving” (vLLM)
Dettmers et al. (2022). “LLM.int8(): 8-bit Matrix Multiplication”

Tools and frameworks:

VLLM: docs.vllm.ai

llama.cpp: github.com/ggerganov/llama.cpp
AutoAWQ: github.com/casper-hansen/AutoAWQ

MLX: ml-explore.github.io/mlx

bitsandbytes: github.com/TimDettmers/bitsandbytes

PEFT library: huggingface.co/docs/peft
Emerging techniques:

m GPTQ-R: Refined GPTQ with better Hessian approximation
= QulP: Quantization with Incoherence Processing (2-bit!)

m SpQR: Sparse Quantized Representation

[

SmoothQuant: Migrate difficulty from activations to weights



	The Memory Problem
	Quantization Fundamentals
	QLoRA: Efficient Fine-Tuning
	Deployment Strategies

