Lecture 11.3: Efficient LLM Deployment

Quantization, QLoRA, and Running Models at Home

Heman Shakeri

The Democratization Challenge

From billion-parameter models to your laptop

Topics:

- The memory bottleneck: Why 7B models need 66+ GB for training
- Quantization fundamentals: Representing weights with 4 bits instead of 16
- QLoRA: Fine-tuning 7B models on consumer GPUs (8-12 GB)
- Mands-on: Fine-tune and deploy models on your machine
- Trade-offs: Speed, quality, and hardware constraints

Practical Outcome

By the end, you will fine-tune and serve models on consumer hardware!

The Billion-Parameter Reality

Modern language models are remarkably capable but extraordinarily large:

Open models:

- **Gemma 3**: 270M, 2B, 9B, 27B (Apache-2.0)
- **LLaMA 3.1**: 8B, 70B, 405B (Apache-2.0)
- Mistral: 7B (Apache-2.0)
- **Qwen 2.5**: 7B, 14B, 72B (Apache-2.0)

Proprietary models:

- **GPT-4**: Rumored 1.7 trillion parameters
- Claude 3: Multiple variants (sizes undisclosed)

Question: Can you run these on your laptop? Let us do the math.

Memory Requirements: Just Storing Weights

Each parameter is a number. Standard storage formats:

Format	Bits/param	Bytes/param	7B model
FP32 (float32)	32	4	28 GB
FP16 (float16)	16	2	14 GB
BF16 (bfloat16)	16	2	14 GB
INT8	8	1	7 GB
INT4	4	0.5	3.5 GB

Example: 7 billion parameters in FP16:

$$7 \times 10^9$$
 params \times 2 bytes/param = 14 GB

This is just the **storage cost**. **Inference** requires *more* memory to hold the **KV-Cache** (the "memory" of the conversation), which can be several GBs itself for long contexts.

Your hardware:

- Consumer laptop: 8–16 GB RAM (shared with OS, browser)
- RTX 3060/4060 GPU: 8-12 GB VRAM
- MacBook Pro M3: 16–32 GB unified memory

What About Smaller Models?

Gemma 3 270M in different precisions:

Format	Inference	Training (w/ Adam)
FP32	1.08 GB	13 GB
FP16	540 MB	6.5 GB
INT8	270 MB	_
INT4	135 MB	_

Much more manageable! But what if you want to use larger, more capable models?

Trade-off:

270M: Fits easily, limited capability

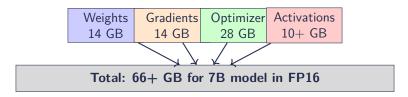
■ 7B: Better capability, needs optimization

■ 70B+: State-of-art capability, requires advanced techniques

Today's goal: Make 7B models as accessible as 270M models used to be!

Training Makes It Worse

During training, memory requirements explode:



Why so much?

- **Gradients**: Same size as weights (14 GB for FP16)
- Optimizer states: Adam stores first and second moments in FP32 (28 GB!)
- **Activations**: Stored during forward pass for backpropagation (10+ GB)

This requires enterprise GPUs (A100 80GB, H100 80GB) costing \$10,000–\$40,000!

The Challenge and Solution

The Challenge

Goal: Enable researchers and practitioners to:

- Run 7B models for inference on 8 GB GPUs
- Fine-tune 7B models on 12 GB GPUs
- Deploy models on CPUs and consumer hardware

The Solution

Three-pronged approach:

- Quantization: Fewer bits per parameter
- Efficient fine-tuning: QLoRA (quantization + LoRA)
- Optimized serving: Specialized inference engines

Result: Democratize access to powerful LLMs!

The Core Idea

Quantization: Represent weights with fewer bits while preserving performance

Analogy: Image compression

Raw photo: 24 bits per pixel (16 million colors)JPEG: Approximate values, much smaller file

Visual quality: Often indistinguishable

For neural networks:

Original weights: FP16 or FP32 (continuous values)

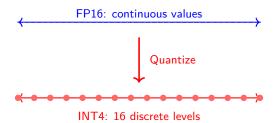
Quantized weights: INT8 or INT4 (discrete levels)

Model quality: Minimal degradation with proper techniques!

Key insight: Neural networks are remarkably robust to reduced precision

How Quantization Works

Basic quantization maps floating-point weights to integers



The quantization formula:

Given floating-point weight $w \in \mathbb{R}$, quantize to integer:

$$w_{\text{quant}} = \text{round}\left(\frac{w-z}{s}\right)$$

where s = scale, z = zero-point

To reconstruct (dequantize):

$$\hat{w} = w_{\text{quant}} \cdot s + z$$

Example: 8-bit Quantization

Task: Quantize weights in range [-0.5, 0.5] to INT8 (256 values) **Steps**:

- 1. Determine range: $w_{min} = -0.5$, $w_{max} = 0.5$
- 2. Compute scale:

$$s = \frac{w_{\text{max}} - w_{\text{min}}}{2^8 - 1} = \frac{1.0}{255} \approx 0.00392$$

3. Quantize w = 0.12:

$$w_{\text{quant}} = \text{round}\left(\frac{0.12}{0.00392}\right) = \text{round}(30.6) = 31$$

4. Dequantize:

$$\hat{w} = 31 \times 0.00392 \approx 0.1215$$

Error: |0.12 - 0.1215| = 0.0015 (very small!)

Quantization Strategies

Method	Description	Bits
PTQ	Post-Training Quantization	4–8
QAT	Quantization-Aware Training	4–8
Weight-Only	Quantize weights, keep activations FP16	3–4
Weight + Act	Quantize both	8

For LLMs, weight-only quantization dominates:

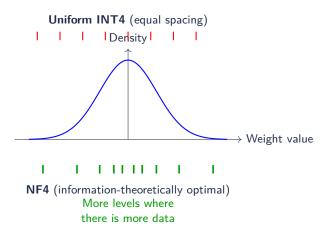
- Quantize weights to INT4 (16 values)
- Keep activations in FP16 during computation
- **4**× **memory reduction** with minimal quality loss!

Weight-only works because weights (W) are static and have a nice, stable distribution. Activations (x) are dynamic (change with every input) and have large outliers. Quantizing these outliers (e.g., in W_x) is what causes performance degradation.

NF4: Normal Float 4

Standard INT4 uses uniform spacing: $\{0, 1, 2, ..., 15\}$

But neural network weights follow a **normal distribution**!



NF4 (used in QLoRA): More quantization levels near zero, fewer in tails This gives **better precision where it matters**!

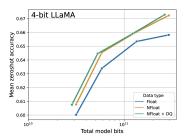
Quantization Methods for LLMs

Method	Description	Use
GPTQ AWQ	Post-training using Hessian info Activation-aware (protects salient weights)	3 — 4-bit inference (static quantization for the following state of the following state o
GGUF bitsandbytes	Format for Ilama.cpp (CPU/Metal) On-the-fly $4/8$ -bit with NF4	Laptops, no GPU Training (QLoRA) & inference

Bottom line: With 4-bit quantization, the **16**-bit model size is reduced by \approx **4** \times :

e.g. 70B model: \sim 140 GB \rightarrow **41** GB.

Quality Loss: **4**-bit QLoRA with NF4 is shown to **match 16-bit performance** [Fig2 of QLoRA paper:].



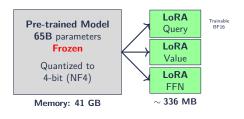
QLoRA

Recall Memory savings for adapters:

- Original trainable params: $d \times k$
- LoRA trainable params: r(d + k) (typically r = 8 or r = 16)

The problem: Even with LoRA, the 65B model still requires > 780 GB in 16-bit for finetuning!

QLoRA = Quantized base model + LoRA adapters



 $\label{eq:Total: of GB} \mbox{Fits on a single professional GPU!}$

QLoRA: Visualizing the Memory Savings

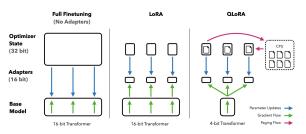


Figure 1: Different finetuning methods and their memory requirements. QLoRA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

- Full Finetuning updates a huge **16**-bit model and stores a massive **32**-bit Optimizer State.
- LoRA reduces the Optimizer State slightly by adding small **16**-bit Adapters, but the base **16**-bit model remains the memory bottleneck.
- QLoRA fundamentally solves the bottleneck by quantizing the base model to 4-bit, while retaining the small 16-bit Adapters and using Paged Optimizers (Paging Flow) to manage the Optimizer State with the CPU
- Paging is an old memory management scheme that allows a system to store and retrieve data from secondary storageand the main memory

QLoRA: Key Innovations

- 1. 4-bit NormalFloat (NF4): Quantize base to 4 bits optimally
 - Information-theoretically optimal for normally distributed weights
 - Better empirical results than 4-bit Integers and 4-bit Floats
- 2. Double Quantization (DQ): Quantize the quantization constants
 - Quantization constants are typically 32-bit floats
 - DQ quantizes these constants, saving an average of 0.37 bits per parameter
 - Saves \sim **3** GB for a **65**B model
- 3. Paged Optimizers: Handle memory spikes via unified memory
 - Uses NVIDIA unified memory for automatic page-to-page transfers between CPU and GPU
 - Prevents out-of-memory errors during gradient checkpointing peaks
- 4. LoRA adapters in BF16: Keep trainable parameters in high precision
 - The frozen base is 4-bit; the trainable adapters are **16**-bit **BrainFloat** (**BF16**)
 - Training with high precision is critical for stable gradient updates

QLoRA for Gemma 3 270M

Can we use QLoRA for smaller models?

Yes, but it's overkill!

Method	Memory	When to Use
Full FT (FP16)	6.5 GB	Plenty of VRAM
LoRA (FP16)	4 GB	Save some memory
QLoRA (4-bit)	2.5 GB	Extreme constraints

For Gemma 3 270M:

- Regular LoRA already very efficient
- QLoRA adds complexity without much benefit
- Only use if you have <4 GB VRAM</p>

Sweet spot for QLoRA: 7B-70B models on consumer GPUs **For larger models (70B+)**:

- 70B in 4-bit: ~35 GB (still needs high-end GPU)
- May need model parallelism across multiple GPUs

Beyond Training: Efficient Inference

You've fine-tuned your model. Now what?

Deployment requirements:

- Low latency (time to first token <100ms)
- High throughput (many requests/second)
- Memory efficiency (serve multiple users)
- Hardware flexibility (GPU, CPU, edge devices)

Challenge: Standard HuggingFace Transformers is not optimized for production

Solution: Specialized inference engines

Inference Engine Landscape

Engine	Specialty	Hardware
vLLM	High-throughput GPU serving	NVIDIA GPU
llama.cpp	CPU/edge deployment	CPU, Metal, CUDA
MLX-LM	Apple Silicon optimization	M1/M2/M3
TGI	Production-ready API server	NVIDIA GPU
TensorRT-LLM	Maximum GPU performance	NVIDIA GPU

Key innovation across all engines:

- Quantization (INT4/INT8)
- KV-cache optimization
- Batching and scheduling
- Kernel fusion and optimization

The Democratization Vision

The Future is Accessible

Three years ago: Running LLMs required million-dollar infrastructure **Today**: With the techniques you learned:

- Run 7B models on \$300 consumer GPUs
- Fine-tune on laptops with 16 GB RAM
- Deploy on edge devices and phones

Tomorrow: Even more efficient methods will emerge!

- Better quantization (sub-4-bit without quality loss)
- Sparse models (Mixture-of-Experts at edge)
- Hardware-software co-design

Your opportunity: Use these tools to build LLM applications that were impossible just a few years ago!

Real-World Impact

The techniques you learned today are **actively used in production**:

Startups: Deploy LLM services without massive GPU clusters

Research labs: Enable more scientists to experiment with large models

Edge AI: Run models on robots, drones, IoT devices

Privacy applications: Keep sensitive data local with on-device inference

Developing regions: Access AI without expensive cloud services

"The best model is not the largest model it is the model you can actually deploy and use."

Further Reading

Core papers:

- Dettmers et al. (2023). "QLoRA: Efficient Finetuning of Quantized LLMs"
- Frantar et al. (2022). "GPTQ: Accurate Post-Training Quantization for GPT"
- Lin et al. (2023). "AWQ: Activation-aware Weight Quantization"
- Kwon et al. (2023). "Efficient Memory Management for LLM Serving" (vLLM)
- Dettmers et al. (2022). "LLM.int8(): 8-bit Matrix Multiplication"

Tools and frameworks:

- vLLM: docs.vllm.ai
- Hama.cpp: github.com/ggerganov/llama.cpp
- AutoAWQ: github.com/casper-hansen/AutoAWQ
- MLX: ml-explore.github.io/mlx
- bitsandbytes: github.com/TimDettmers/bitsandbytes
- PEFT library: huggingface.co/docs/peft

Emerging techniques:

- GPTQ-R: Refined GPTQ with better Hessian approximation
- QuIP: Quantization with Incoherence Processing (2-bit!)
- SpQR: Sparse Quantized Representation
- SmoothQuant: Migrate difficulty from activations to weights