Heman Shakeri

Recap: The Adaptation Challenge

When you can get away with no fine-tuning, you absolutely should!
m In-Context Learning, Prompt Engineering, RAG

Now: When fine-tuning IS necessary, how do we do it efficiently?
The adaptation imperative: Two-stage process
@ Pre-training: Large-scale, self-supervised learning on vast corpora (e.g.,
2 trillion tokens)
@ Adaptation: Specialization to specific downstream tasks or domains
The bottleneck: As models scale to hundreds of billions of parameters,

traditional adaptation methods become computationally and financially
prohibitive

Central question: How can we efficiently adapt massive pre-trained models
without the costs of full fine-tuning?

The Modern LLM Training Pipeline

Once Once Once

Pre-training Instruction Safety
2T tokens Tuning Tuning
Base Model Chat Model Safe Model

[Medical QA] [Legal Assistant] [Code Generation]

Many times!

The challenge: Steps 2-4 all involve fine-tuning
There are unlimited possibilities for task-specific applications

The “"Many times!" arrow is the core economic driver for PEFT. The cost
of the first three steps is amortized, but the “Task-specific" step is repeated
1,000s of times. The cost of this step *must* be near-zero for the ecosystem
to be viable.

The Modern LLM Training Pipeline

Phase 1: Foundational Training (Done by Al Lab)

’ \
I Pre-training Instruction Safety I
: 2T tokens Tuning Tuning :
I Base Model Chat Model Safe Model I
\

1

[Legal Assistant] [Code Gen]‘

Phase 2: Task-Specific Adaptation (Done by Developer)

The Core Distinction:

m Phase 1 (Foundational): Done once by the model creator. This is a
massive, multi-million dollar process to create the single, powerful model

that is released.
= Phase 2 (Adaptation): Done many times by developers. Every time
you want a new, specialized skill, you run this step.

The PEFT Imperative:

m All stages in Phase 1 and Phase 2 involve fine-tuning.
m To make this ecosystem work, Phase 2 must be extremely cheap,

Full Fine-Tuning as the Performance Gold Standard

Definition: Full Fine-Tuning (FFT) updates all parameters 6 of a pre-trained
model during adaptation

Maximum expressive capacity: By updating every weight, FFT provides
maximum flexibility for the model to adapt to task nuances

FFT serves as the performance benchmark. PEFT methods are almost
always evaluated by their performance relative to FFT (e.g., “achieves 98.2%
of FFT performance on GLUE").

The problem: FFT is prohibitively expensive in three key dimensions:
@ Computational expense

@ Memory footprint
@ Storage inefficiency

FFT Cost 1: Computational Expense

FFT demands immense computational resources:
Hardware requirements:
m Requires clusters of high-end GPUs (A100s, H100s)

m Single fine-tuning run: thousands to tens of thousands of dollars

m Limits experimentation and accessibility for smaller organizations
Example with Gemma 3 270M:

m Small enough for single GPU (much more accessible than 8B+ models)
m But still: full fine-tuning requires GPU memory and time

m Multiple experiments x multiple tasks = significant cost

PEFT promise: Reduce computational requirements by orders of magnitude

FFT Cost 2: Memory Footprint

VRAM consumption during training has three components:

Component Size (16-bit) Gemma 3 270M
Model weights 2N bytes 540 MB
Gradients 2N bytes 540 MB
Optimizer states (Adam) 8N bytes 2.16 GB

Total 12N bytes 3.24 GB

The Optimizer states are the bottleneck. Adam/AdamW stores two moving
averages (momentum m; and variance v;) for every single parameter.

m m; (4 bytes) + v; (4 bytes) = 8 bytes.

m Total = 2N (weights) + 2N (grads) + 8N (Adam) = 12/\.

m This 12N (or 16/ for 32-bit) cost is the specific problem that PEFT
methods, which reduce the number of trainable parameters, are designed

to solve.
For larger models:

m 7B model: ~84 GB (requires A100)
m 70B model: ~840 GB (requires multiple GPUs)

FFT Cost 3: Storage Inefficiency

FFT produces a complete, new copy of the entire model for every task

FFT Storage PEFT Storage
270M model
270M model 270M base
270M model
270M model
Task 1-4 Base 4+ Adapters
2.16 GB 560 MB

This is the deployment and MLOps nightmare.

m 1,000 tasks = 1,000 separate, massive model files to host, version, and
serve.

m The PEFT model is 1 shared base model + 1,000 tiny (megabyte-sized)
adapter files. This is a fundamentally superior systems architecture.

The Representational Challenge: Catastrophic Forgetting

Beyond resource constraints, recall the fundamental problem facing FFT:

Catastrophic Forgetting
When a model is fine-tuned on Task B, it often loses proficiency on previously
learned Task A

Gradient updates for the new task overwrite the knowledge representations
crucial for the old task

Implication: FFT is fundamentally unsuitable for applications requiring
incremental knowledge accumulation

Important caveat: PEFT methods can also suffer from forgetting!
Parameter efficiency alone does not guarantee preservation of prior knowledge

The PEFT Paradigm

Goal: Achieve FFT-level performance while updating a tiny fraction of
parameters (often <1%)

This is the “magic" of PEFT. How can updating <1% of parameters equal
the performance of updating 100%?

m Answer: The pre-trained models are massively over-parameterized for
any single downstream task. The “adaptation" needed is much simpler
than the “pre-training" task.

Benefits:

m Drastically reduce computational costs
m Drastically reduce memory requirements

m Drastically reduce storage costs

Organization principle: How do methods interact with original model
parameters 07

The Three-Category Framework

[Parameter-Efficient Fine-Tuning (PEFT) }
Additive Selective Prompt-Based
Freeze 0 Freeze most 6 Freeze all 0
Add new params ¢ Train subset 6’ Learn input prompts
Examples: Example: Examples:
Adapters, LoRA BitFit Prompt/Prefix Tuning

Three categories:

@ Additive: Freeze 6, add new trainable parameters ¢
@ Selective: Freeze most weights, train small subset 6’ C 6

© Prompt-Based: Freeze entire model, optimize learnable “virtual tokens”

Master Taxonomy Table

Category Core Hypothesis Method Paper

Additive Bottleneck modules Adapters Houlsby (2019)
Additive Low intrinsic rank LoRA Hu (2021)
Selective Bias-centric BitFit Ben-Zaken (2021)
Prompt External steering Prompt Tuning Lester (2021)

Prompt Layer-wise steering Prefix Tuning Li & Liang (2021)

Key insight: Each method has a core hypothesis about how adaptation
works

Understanding the hypothesis — Understanding when to use each method

Orthogonal Techniques

We distinguish PEFT principles from complementary techniques that we will
discuss later:

Quantization (e.g., 4-bit, 8-bit):

m Reduces memory footprint via lower-precision data types

Data-Centric Tuning:

m Focuses on what the model learns (e.g., instruction tuning, RLHF)
rather than how parameters are updated

The Bottleneck Hypothesis: Classic Adapters

Paper: Houlsby et al. (2019), “Parameter-Efficient Transfer Learning for
NLP"

Core Hypothesis: A large pre-trained model can be adapted by inserting a
small number of new, task-specific parameters while leaving original weights
untouched

Key idea: Insert small feedforward networks (“adapters”) within each
Transformer layer

Parameter-Efficient Transfer Learning for NLP

Figure 2. Architecture of the adapter module and its integration
with the Transformer. Left: We add the adapter module twice
to each Transformer layer: after the projection following multi-
headed attention and after the two feed-forward layers. Right: The
adapter consists of a bottleneck which contains few parameters rel-
ative to the attention and feedforward layers in the original model.
The adapter also contains a skip-connection. During adapter tun-
5:;:";’;1’; ing, the green layers are trained on the downstream data, this

includes the adapter, the layer normalization parameters, and the
final classification layer (not shown in the figure).

Mult-headed
attention

[Houlsby et al. (2019)]

Critical Trade-off: Serial Architecture

Impact on Inference

Because adapters are separate modules executed sequentially, they
introduce additional computational steps and thus increase latency during
inference for every layer

This is not a minor implementation detail—it's a fundamental
consequence of the serial architectural choice

Engineering Pointer: This is the key drawback of Adapters for production.

m The main Transformer block must wait for the adapter block to finish
before the residual connection can be computed.

= Total Iatency = thase T Nlayers X tadapter-
Trade-off:

+ High modularity (easy to stack, combine for multi-task)

- Unavoidable latency overhead

The Low-Rank Adaptation Hypothesis

Paper: Hu et al. (2021), “LoRA: Low-Rank Adaptation of Large Language
Models"

Core Hypothesis: The change in a model's weight matrix during adaptation,
AW, has a very low “intrinsic rank”

Implication: AW can be efficiently approximated by the product of two
much smaller matrices

Mathematical insight: Instead of learning full update AW € RI*k,
decompose it:

AW =~ BA

where:
m B € R?*" (down-projection)
m A € R™k (up-projection)
m r < min(d, k) (rank, typically 8-64)

LoRA: Parameter Count
Parameter comparison:

m Original: d x k parameters

m LoRA: dr + rk = r(d + k) parameters

= Reduction factor: “HH) ~ 2t (when d ~ k)

Concrete example: Update a 5 x 5 weight matrix (25 parameters)

Rank r = 1 decomposition:

by bia; -+ bias

5 params b531 T b535
bs
N—— 25 values

5 params

Trade-off: 10 trainable parameters vs 25 full parameters

Sacrifice some precision for dramatic efficiency. As matrices grow, savings
become massive.

LoRA: Parallel Architecture

Key distinction from Adapters: LoRA injects trainable matrices in parallel
to existing linear layers

frozen trainable

Modified forward pass:
h = Wox + AWx = Wyx + BAx

Compare this to the Adapter’'s h < h + Adapter(h), which happens after the
main layer.

The Zero-Latency Advantage

Critical Advantage: Merging for Zero Latency

Because the LoRA update is a linear operation added to another linear
operation, the matrices can be algebraically merged after training:

W' = W, + BA

Engineering Pointer: This makes LoRA great for production.

m During training: You keep W, frozen and only train B and A.

m For deployment: You compute Wierged = Wo + BA once, offline.

m You then deploy a model with the new Wiergeq Weights. This merged
model has the exact same architecture and latency as the original.

Fundamental advantage: This property was unavailable to serial
architectures like Adapters, again:

Deployment workflow:
@ Train with parallel LoRA path
Q@ Merge: W' = Wy + BA
© Deploy merged model (no structural changes)

Where to Apply LoRA

Can apply to any linear layer in the Transformer:

= Query, Key, Value projections (Wg, Wk, W)
m Output projection (Wop)
m FFN layers (W4, Ws)

Critical Finding: Train All Layers

Research shows that training ALL layers is essential to match full
fine-tuning performance
Applying LoRA to only some layers (e.g., just attention) gives worse results

Recommendations:

® Minimum: Apply to Wg and Wy in all attention layers
m Best results: Apply to all linear projections in all layers

Hyperparameter Selection: Rank r

The LoRA paper shows that performance is insensitive to rank r in a wide
range. Performance for r = 4,8,32,64 is often very similar.

This strongly supports the low-rank hypothesis—the intrinsic rank of
adaptation is indeed very low (e.g., r = 1 or r = 2 already performs well).

Practical recommendations:

m Start with r = 16 or r = 64: Good balance for most tasks.
m Low r = 8: Very efficient, often “good enough" for simple adaptations.

m High r = 128-256: For complex tasks (e.g., teaching a new skill) if
r = 64 is insufficient.

LoRA Parameter Counts for Gemma 3 270M

Model Params Rank LoRA Params % Original
Gemma 3 270M 8 160K 0.06%
Gemma 3 270M 16 320K 0.12%
Gemma 3 270M 64 1.3M 0.48%
For comparison:
7B 7B 8 4.2M 0.06%
7B 7B 64 33.6M 0.48%
70B 70B 64 336M 0.48%

Key observation: Percentage stays constant across model scales

m A 200x reduction in trainable parameters (0.48% vs 100%) means a
200x reduction in the optimizer state memory (the 8N part of the
12N problem).

m This is what allows fine-tuning on a single consumer GPU.
m Storage per task (the adapter file) is ~5 MB, not ~540 MB.

Hyperparameter Selection: Alpha o

Controls how much LoRA updates affect original weights:

h:W0x+%.BAx

This scaling factor «/r is a simple hyperparameter to normalize the update
magnitude.

m B is initialized to 0, so the initial update is 0.
m A is initialized with Kaiming uniform.

m The scaling factor acts like a fixed scalar on the learning rate for the
LoRA weights.

Common settings:

m Original LoRA: o = r (scaling factor = 1).
m Common practice: a =2 x r (e.g., r = 16, = 32).
m Q-LoRA paper: a = 16,r = 64 (0.25x scaling).

Practical tip: A common strategy is to set a = r and then only tune the
learning rate.

Other Hyperparameters

Dropout (from Q-LoRA paper):

m Smaller models (270M-7B): dropout = 0.1
m Larger models (33B, 65B+): dropout = 0.05

Training hyperparameters:

Model Size Learning Rate Batch Size Epochs

270M-7B 2x107* 16 3
13B 2x107* 16 3
33B 1x107* 16 3
65B+ 1x107* 16 3

For Gemma 3 270M: Use settings for smaller models

Adapters vs LoRA: Fundamental Architectural Choice

Dimension Adapters LoRA

Architecture Sequential bottleneck Low-rank parallel
Inference latency Adds latency Zero latency

Modularity High (easy to combine) Lower (monolithic)
Hypothesis Architectural solution Mathematical hypothesis
Merging Cannot merge Can merge weights

This is not an implementation detail—it's a fundamental design choice
with direct consequences for deployment

Trade-offs:

m Adapters: Better for multi-task systems, worse for latency

m LoRA: Better for production deployment, harder to combine

LoRA Implementation (Part 1)

import torch
import torch.nn as nn

class LoRALayer (nn.Module) :

def

def

__init__(self, in_features, out_features, rank=16, alpha=16)
super().__init__()

self.rank = rank

self.alpha = alpha

Initialize A with small random values, B with zeros
self.lora_A = nn.Parameter(
torch.randn(in_features, rank) * 0.01
)
self.lora_B = nn.Parameter(
torch.zeros(rank, out_features)

)

Scaling factor
self.scaling = alpha / rank

forward(self, x):
Low-rank update with scaling
return (x @ self.lora_A @ self.lora_B) * self.scaling

Key

design choices:

Initialize A with small random values (break symmetry)
Initialize B with zeros (start with identity behavior)

m Apply scaling factor «/r to control update magnitude

LoRA Implementation (Part 2)

class LoRALinear (nn.Module):

def

__init__(self, linear_layer, rank=16, alpha=16):

super () .__init__()

Freeze original weights

self.linear = linear_layer

self.linear.weight.requires_grad = False

if self.linear.bias is not None:
self.linear.bias.requires_grad = False

Add LoRA adapter

self.lora = LoRALayer(
linear_layer.in_features,
linear_layer.out_features,
rank, alpha

)

forward(self, x):
Original + LoRA update
return self.linear(x) + self.lora(x)

merge_weights(self):
TT""Merge LoRA weights into base weights for inference
with torch.no_grad():
Compute BA and add to original weights
delta_w = self.lora.lora_B @ self.lora.lora_A
self.linear.weight.data += (delta_w.T * self.lora.scaling)

Critical method: merge_weights() enables zero-latency deployment!

The Bias-Centric Hypothesis: BitFit

Paper: Ben-Zaken et al. (2021), "BitFit: Simple Parameter-efficient
Fine-tuning”

Core Hypothesis: Fine-tuning is primarily a process of exposing or
redirecting knowledge already acquired during pre-training

This can be achieved by modifying only the bias terms
Method:

m Freeze all weight matrices W
m Train only bias vectors b

Parameter count: Typically <0.1% of model parameters

No architecture changes: Model structure remains completely unchanged

The Bias-Centric Hypothesis: BitFit [Ben-Zaken et al.
(2021)]

Core Hypothesis: “finetuning is mainly about exposing knowledge induced
by language-modeling training, rather than learning new task-specific
linguistic knowledge.”

Method (BitFit):

m Freeze all weight matrices W in the entire model.

m Train only the bias vectors b (and the LayerNorm parameters).
Scientific Pointer: This is the most parameter-efficient method.

m Parameter count: Typically <0.1% of model parameters (e.g., 0.08%
for BERT-Large).

m The hypothesis is that the W matrices are already universal feature
extractors. The bias terms b act as “knobs" or “gates" to shift and
rescale these features for the new task.

The External Steering Hypothesis: Prompt-Based Methods

Prompt-based methods represent the least intrusive category

Core principle: Frozen model’s behavior can be “steered” without modifying
any internal weights

Two main approaches:

1. Prompt Tuning (Lester et al. 2021):

m Prepend continuous embedding vectors (“soft prompts”) to input
m Only soft prompt embeddings are updated via backpropagation

2. Prefix Tuning (Li & Liang 2021):

m Insert trainable prefix vectors into hidden states of every layer
m More fine-grained control than Prompt Tuning

Forward pass (Prompt Tuning):

input = [soft_prompty, ..., soft_prompt,, text_embeddings]

The Intrusiveness Spectrum

These categories form a spectrum of how “intrusively” they modify the base
model:

Least Intrusive Most Intrusive
Prompt-Based}—{ Selective Additive

Input space Perturb Add new
No weight changes existing params components

Left (Prompt-Based):

m Completely non-invasive to model

m |ldeal for multi-tenant serving (one model, many tasks)
Right (Additive):

m More invasive but more expressive

m Better performance on complex tasks

Prompt-based methods exhibit strong dependence on
model scale

The larger and more capable the frozen model’s internal knowledge base, the
more effectively it can be steered by a small, externally learned prompt.

—=®= Model Tuning —=H- Prompt Design
—=®- Model Tuning (Multi-task) =—%— Prompt Tuning
100
90 . %
—
o
o / —x
S 80 /
w
=)
(_.')j |
EJ. 70 /
o
@ /-N./
60 / =)

s

108 10° 10%° 101t
Model Parameters
Model tuning of T5 [Lester et al. (2021)]

50

Comparative Analysis Table

Method Core Hypothesis Trainable Inference Storage
Adapters Bottleneck modules 0.1-4% Adds latency Small
LoRA Low-rank updates 0.1-2% Zero overhead ~ Small
BitFit Bias-centric <0.1% Zero overhead Tiny
Prompt Tun- External steering <0.01% Slight Tiny
ing

Prefix Tuning Layer-wise steering <0.1% Slight Tiny

Design Trade-offs

1. The Latency vs Modularity Dilemma
Adapters:

+ High modularity—easy to stack or combine for multi-task learning
- Increased inference latency (unavoidable due to serial architecture)

LoRA:

+ Zero latency after weight merging
- Creates monolithic model—dynamic task combination is complex

2. The Performance vs Efficiency Frontier
BitFit: Extreme parameter efficiency, good for low-data regimes, may underperform on complex tasks

LoRA: Uses more parameters but typically achieves performance closest to FFT. Robust default choice
for most applications

3. The Intrusiveness vs Scale Dependency
Prompt-based methods:

+ Non-intrusive—ideal for multi-tenant serving
- Strong dependency on very large model scales (>10B)
- For smaller models like Gemma 3 270M, performance substantially lower

For Gemma 3 270M specifically:

Best choice: LoRA (good performance, zero latency)
Alternative: Adapters (if modularity matters)
Experimental: BitFit (for extreme efficiency)

]
]
]
= Avoid: Prompt-based methods (model too small)

	Full Fine-Tuning: The Baseline
	A Foundational Taxonomy of PEFT
	Additive Methods: Adapters
	Additive Methods: LoRA
	Selective & Prompt-Based Methods
	Comparative Framework

