
Lecture 11.1: Adapting Large Language
Models

Without Fine-Tuning
In-Context Learning, Prompt Engineering, and RAG

Heman Shakeri

Today’s Roadmap

Central Thesis: When you can get away with no fine-tuning, you should!
Topics covered:

1 The adaptation challenge: generality vs specificity
2 In-Context Learning (ICL): Learning without parameter updates
3 Prompt engineering: The art and science of effective prompts
4 Retrieval-Augmented Generation (RAG): Grounding LLMs in external

knowledge
5 Why hesitate to fine-tune? Costs, risks, and hidden dangers
6 Decision framework: When to use each approach
7 Practical examples with Gemma 3 270M

The Generality-Specificity Tension

LLMs like GPT-4, Claude, Gemma 3: General-purpose language
understanding from trillions of training tokens
The fundamental problem: Generality conflicts with practical applications

Key Limitations of Base Models
Static knowledge: Fixed training cutoff (Gemma 3: data through
August 2024)
Diffuse knowledge: Broad but not deep on specialized domains
No private data: Cannot access proprietary company information
Lack of specificity: May not follow exact style, format, or behavioral
requirements

Question: How do we bridge this gap between general capability and specific
needs?

Two Paradigms for Adaptation

How to
adapt?

Context Augmentation
(Non-Fine-Tuning)

Frozen parameters
Dynamic context

Methods:
- In-Context Learning
- Prompt Engineering

- RAG

Parameter Modification
(Fine-Tuning)

Updated parameters
Static knowledge

Methods:
- Full Fine-Tuning

- PEFT (LoRA, etc.)

Our focus first Next

Central Principle
“When you can get away with no fine-tuning, you absolutely should!”

What is In-Context Learning?
Definition: The ability of LLMs to learn a new task from examples or
instructions in the prompt, without any parameter updates
Key Characteristics:

Model weights remain completely frozen
“Learning” lasts only for that inference → No gradient descent

Remarkable capability: The same model can handle countless different
tasks just by changing the prompt!

How ICL Works: The Mechanism
Core mechanism: Pattern recognition and analogical reasoning through
attention
When you provide examples, the model’s attention layers:

1 Identify the underlying task structure
2 Recognize input-output patterns
3 Infer the desired format and style
4 Extrapolate to new, unseen queries

Example: Sentiment classification with ICL

ICL Prompt
Review: “This movie was absolutely fantastic!”
Sentiment: Positive
Review: “Terrible film. Waste of time.”
Sentiment: Negative
Review: “The plot was confusing and pacing too slow.”
Sentiment: ?

Model output: Negative

Active research: How ICL works

Implicit Meta-Learning: The pre-training on diverse text forces the
model to learn how to learn from short contexts.
Algorithmic Simulation: Some research (e.g., Olsson et al. 2022 on
“induction heads") suggests transformers can simulate simple algorithms
in their forward pass. ICL might be the model simulating a simple
learning algorithm (like nearest-neighbor or a linear classifier) on the
prompt examples. The attention mechanism is the algorithm, and the
prompt examples are its data.

The Scaling Law for ICL
Critical Finding: ICL and Model Scale
The effectiveness of In-Context Learning is strongly dependent on model
scale

Why? Extensive pre-training endows large models with sophisticated
understanding of language patterns
Maybe the “why" behind the entire LLM revolution: Small models are
“pattern matchers," but large models become “in-context learners." The
performance of ICL is not a smooth line from zero; it’s an emergent ability
that “turns on" at a certain scale.

The Importance of Prompt Design

Key insight: The model’s output heavily depends on how the input is
phrased and structured
Small changes in wording, example ordering, or formatting can affect results
Same LLM, different results:

Poor prompt → Mediocre output
Well-crafted prompt → Excellent output

This makes prompt engineering both an art and a science

Core Prompting Strategies: Zero-Shot

Zero-Shot Prompting: Give the model an instruction or question with no
examples

Zero-Shot Example
Translate the following English text to French:
“The weather is beautiful today.”

When to use:

Simple, well-defined tasks
Model likely saw many similar examples during pre-training
Quick prototyping and testing

Limitations:

May not follow specific format requirements
Less reliable for complex or unusual tasks
Cannot specify nuanced behavioral preferences

Core Prompting Strategies: Few-Shot

Few-Shot Prompting: Provide 1+ demonstration examples of input-output
pairs

Few-Shot Example
Extract the names of people from the following sentences.
Sentence: “Alice and Bob went to the store.”
Names: Alice, Bob
Sentence: “Dr. Sarah Johnson met with Professor Michael Chen.”
Names: Sarah Johnson, Michael Chen
Sentence: “The conference was organized by Emily Rodriguez.”
Names: ?

Best practices:

Use 2-5 diverse, high-quality examples
Ensure examples cover edge cases
Maintain consistent formatting across examples
Order matters: sometimes best examples should go first

Order matters!

[Liu et al (2023)]

“Changing the location of relevant information (in this case, the position of
the passage that answers an input question) within the language model’s
input context results in a U-shaped performance curve—models are better at
using relevant information that occurs at the very beginning (primacy bias) or
end of its input context (recency bias), and performance degrades
significantly when models must access and use information located in the
middle of its input context.”

Chain-of-Thought (CoT) Prompting
Breakthrough Technique
Dramatically improves performance on complex reasoning tasks by including
intermediate reasoning steps in the examples

Key insight: Standard prompting asks for a direct answer, forcing the model
to compute the solution in one step
CoT prompting encourages the model to “think step by step”, decomposing
the problem, and serializing the computation. The model autoregressively
generates each step.
Power of Chain-of-Thought:

Impact: CoT prompting can improve accuracy by up to +18% on
arithmetic reasoning
Allocates more computation to each reasoning step. Each “step" is a full
forward pass, which is then fed back into the context for the next step.
This effectively allocates more flops to the problem, turning one complex
inference into a sequence of simpler inferences.
Makes the reasoning process explicit and verifiable
Helps the model avoid shortcuts that lead to errors
Provides interpretability into the model’s thought process

CoT Example: Standard vs CoT [Wei et al. 2022, Fig 1, 4]

Advanced CoT Variants I
1. Zero-Shot CoT: Simply append “Let’s think step by step”, or “answer by
yes/no, then explain why” to the query

It implies the model has already learned the latent concept of
“step-by-step reasoning" during pre-training [Kojima et al. (2022)].
Surprisingly effective for large models.
No more human engineering of Few-shot-CoT [Wei et al., 2022] but
requires prompting LLMs twice:

[Kojima et al. (2022), “Large Language Models are Zero-Shot Reasoners."]

Advanced CoT Variants II
1. Zero-Shot CoT: ..
2. Self-Consistency: Generate multiple reasoning chains for the same
question, then take a majority vote.

Higher computational cost (ensemble technique at inference time)
Incorrect answers are often reached via more idiosyncratic,
lower-probability paths. The majority vote filters out this noise.

[Kojima et al. (2022), “Large Language Models are Zero-Shot Reasoners."]

Advanced CoT Variants III
1. Zero-Shot CoT: ... 2. Self-Consistency: ...

3. Auto-CoT: LLM-generated chains (via Zero-Shot-CoT) can be faulty. Simply retrieving
similar questions fails because it amplifies errors (“misleading by similarity"). →: Diversity
of demonstration questions is the key to mitigating the effect of these mistakes.

1 Cluster questions by similarity (e.g., Sentence-BERT embeddings)
2 Select one representative question per cluster+its Zero-Shot-CoT.

[Zhang et al. (2022), “Automatic Chain of Thought Prompting in Large Language Models.”]

Automated Prompt Optimization
Challenge: Manually crafting optimal prompts is time-consuming and
requires expertise

Manual

Human writes
prompt

Test on LLM

Evaluate

Iterate

Automated

Optimizer
generates
prompt

Test on LLM

Reward
signal

Learn

Approaches: AutoPrompt (gradient-based search) [Shin et al.], RL-based
optimization (e.g., APE), LLM-as-optimizer (e.g., PromptBreeder).
Key insight: [PEFT taken to an extreme:] Instead of tuning billions of
weights (full fine-tuning) or even millions (like LoRA), we are "tuning" a
parameter-free string of tokens!

Practical Example: Few-Shot with Gemma 3 270M

1 from transformers import pipeline
2
3 # Load Gemma 3 270M (instruction-tuned)
4 generator = pipeline(
5 ``text-generation",
6 model="google/gemma-3-270m-it",
7 device_map="auto"
8)
9

10 # Few-shot prompt
11 prompt = ``""Classify the sentiment as Positive or Negative.
12
13 Review: ``This product exceeded my expectations!"
14 Sentiment: Positive
15
16 Review: ``Terrible quality. Broke after one use."
17 Sentiment: Negative
18
19 Review: ``Customer service was unresponsive."
20 Sentiment:"""
21
22 result = generator(prompt, max_new_tokens=10, do_sample=False)
23 # Output: ``Negative"

Note: Gemma 3 270M excels at simple, well-defined classification tasks with
few-shot examples

Practical Example: CoT with Gemma 3 270M

1 prompt = ``""Solve math word problems step by step.
2
3 Q: A restaurant served 5 cakes during lunch and 3 during dinner.
4 Each cake was cut into 8 slices. How many slices total?
5
6 A: Let's think step by step.
7 - Total cakes: 5 + 3 = 8 cakes
8 - Slices per cake: 8 slices
9 - Total slices: 8 * 8 = 64 slices

10 The answer is 64.
11
12 Q: A library has 4 shelves with 12 books on each shelf.
13 They receive 15 more books. How many books total?
14
15 A: Let's think step by step."""
16
17 result = generator(prompt, max_new_tokens=150)
18 # Output shows step-by-step reasoning:
19 # - Books on shelves: 4 * 12 = 48 books
20 # - After donation: 48 + 15 = 63 books
21 # The answer is 63.

Important: For complex reasoning, larger models (4B+) perform better than
270M

The Knowledge Problem
Even with excellent ICL and prompting, the model can only work with:

Knowledge from its pre-training (cutoff: August 2024 for Gemma 3)
Information you can fit in the context window (32K tokens for 270M)

Problem Scenarios:

Need current information (news, stock prices, recent events)
Large proprietary knowledge base (company documents, medical records)
Domain-specific information not well-represented in pre-training
Verifiable, attributed answers (citations required)

Parametric vs. Non-Parametric Knowledge

Parametric Knowledge: Information stored in the model’s weights
from pre-training. It’s fast but static and prone to hallucination.
Non-Parametric Knowledge: Information stored in an external
database. It’s slower to access but dynamic, updatable, verifiable, and
grounded in fact.

Solution: Retrieval-Augmented Generation (RAG)
Combine the LLM’s reasoning abilities with an external, updatable knowledge
base

RAG Architecture and Pipeline

Core principle: Ground the model’s responses in retrieved, authoritative
information

Knowledge
Base

(Documents)

Chunk
Documents

Embed
(Vectors)

Vector
Database

Offline Indexing

User Query

Embed Query

Similarity
Search

Top-k Docs

Augment
Prompt with

Retrieved Docs

LLM
(Gemma 3 270M)

Grounded
Answer

Query Time (Inference)

Key property: Semantic search enables finding relevant content, not just
keyword matching!
This architecture was formally introduced in: Lewis et al. (2020),
“Retrieval-Augmented Generation for Knowledge-Intensive NLP.”

RAG Step 1: Indexing and Data Preparation
Input: External corpus (PDFs, documents, websites, databases)
Process:
1. Parse: Extract text from various formats
2. Chunk: Segment into smaller pieces

Critical Trade-off:
• Too large: Dilutes information, may not fit context.
• Too small: Loses semantic context (chunk doesn’t make sense on its

own).
Typical: 256-512 tokens per chunk with overlap (e.g., 50 tokens) to
ensure context isn’t split at arbitrary boundaries.

3. Embed: Transform each chunk into high-dimensional vector via an
embedding model (e.g., all-MiniLM-L6-v2, text-embedding-ada-002)

This maps discrete text into a semantic vector space, where distance
(e.g., cosine similarity) correlates with semantic relevance.

4. Store: Save vectors in vector database (FAISS, Pinecone, Weaviate,
Chroma) and use Approximate Nearest Neighbor (ANN) for efficient,
sub-linear time search.

RAG Step 2: Retrieval at Query Time
Input: User query
Process:
1. Embed query: Convert to vector using same embedding model as
indexing;

Ensures query vector and document vectors live in the same semantic
space.

2. Similarity search: Find top-k most similar chunks

Use cosine similarity or dot product
Efficient approximate nearest neighbor algorithms (ANN)
Typical k: 3-10 depending on context window size

3. (Optional) Re-rank: Use re-ranking model to further refine relevance
This is often a 2-stage process:

• Stage 1 (Retriever): Fast bi-encoder (like ‘MiniLM‘) gets top ∼50
candidates.

• Stage 2 (Re-ranker): Slow, high-accuracy cross-encoder (like BERT)
re-scores only these 50 candidates by looking at ‘(query, doc)‘ pairs.

Output: Top-k most relevant text chunks from the knowledge base

RAG Step 3: Prompt Augmentation and Generation
Input: Original query + retrieved chunks
Process:
1. Synthesize prompt: Combine query and retrieved content

Structure: System instruction + Context + Query
The prompt must explicitly instruct the model to use the context
(anti-hallucination).
Example Template:

You are a helpful assistant. Answer the user’s question based only on the provided context.
If the answer is not in the context, say "I cannot answer based on the provided
information."
Context: — [Retrieved Chunk 1] — [Retrieved Chunk 2] —
Question: [User’s Original Query]

2. Generate: Pass augmented prompt to LLM
3. Output: Comprehensive, grounded answer with optional source
attribution/citations
Key advantage: The LLM sees exactly the relevant information needed to
answer the query!

The Core Value Proposition of RAG

Challenge Fine-Tuning RAG

Hallucinations Reduces but doesn’t eliminate Grounds in verifiable sources
Data freshness Requires retraining Update DB instantly
Transparency Black box Can cite source documents
Privacy/Security Embeds in weights Data stays in secure DB
Cost High (retraining) Moderate (maintain DB)

Four Key Advantages:
1. Mitigation of Hallucinations: Ground every response in specific
retrieved information
2. Data Freshness: External knowledge base can be continuously updated
3. Source Attribution: Present retrieved documents as citations for
verification
4. Enhanced Security: Confidential data stays in secure database, never
embedded in weights

RAG and Context Windows: Design Considerations

Context Window Considerations for Gemma 3 270M
Gemma 3 270M: 32,000-token context window (∼75 pages of text)
Strategic implication: Must design RAG systems carefully for efficient
retrieval

Context window comparison:

Gemma 3 270M: 32K tokens (text-only, optimized for efficiency)
Gemma 3 4B/12B/27B: 128K tokens (multimodal capabilities)
Design retrieval to fit within context limits

Strategic implications for 270M:

Efficient retrieval: Retrieve 5-10 most relevant chunks
Chunk sizing: Use smaller chunks (256-384 tokens)
Smart ranking: Use re-ranking to ensure quality over quantity
Focus on precision: Better to have fewer, highly relevant documents

Key insight: Even with a smaller context window, RAG provides massive
advantages over static model knowledge!

Practical RAG: Simple Pipeline with Gemma 3 270M

1 from sentence_transformers import SentenceTransformer
2 from sklearn.metrics.pairwise import cosine_similarity
3 import numpy as np
4
5 # Initialize models
6 embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
7 llm = pipeline("text-generation",
8 model="google/gemma-3-270m-it")
9

10 # Knowledge base
11 documents = [
12 ``Gemma 3 270M was released by Google in August 2024.",
13 ``Gemma 3 comes in 270M, 1B, 4B, 12B, and 27B sizes.",
14 ``Gemma 3 270M has a context window of 32,000 tokens.",
15 ``The model supports over 140 languages.",
16]
17
18 # Offline: Create embeddings
19 doc_embeddings = embedding_model.encode(documents)
20
21 # Online: Query
22 query = ``What is the context window size of Gemma 3 270M?"
23 query_embedding = embedding_model.encode([query])
24
25 # Similarity search
26 similarities = cosine_similarity(query_embedding, doc_embeddings)[0]
27 top_k = 2
28 top_indices = np.argsort(similarities)[-top_k:][::-1]
29 retrieved_docs = [documents[i] for i in top_indices]

Practical RAG: Generation with Retrieved Context

1 # Augment prompt with retrieved context
2 augmented_prompt = f"""You are a helpful assistant. Answer based on the provided context.
3 If the answer is not in the context, say so.
4
5 Context:
6 {chr(10).join(retrieved_docs)}
7
8 Question: {query}"""
9

10 # Generate answer
11 result = llm(augmented_prompt, max_new_tokens=100, do_sample=False)
12 answer = result[0]['generated_text']
13
14 print(f"Answer: {answer}")
15 # Output: ``Based on the context, Gemma 3 270M has a context window
16 # of 32,000 tokens."

Key points:

Retrieved context explicitly provided to model
Model generates grounded, factual answer
Can trace answer back to specific source documents

Practical RAG: Using Vector Database (ChromaDB)

1 import chromadb
2 from chromadb.utils import embedding_functions
3
4 # Initialize ChromaDB with embedding function
5 client = chromadb.Client()
6 embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
7 model_name="all-MiniLM-L6-v2"
8)
9

10 # Create collection
11 collection = client.create_collection(
12 name="company_docs",
13 embedding_function=embedding_func
14)
15
16 # Add documents with metadata for citation
17 collection.add(
18 documents=[
19 ``Q3 2024 revenue was $50M, up 20% from Q2.",
20 ``New product launch scheduled for December 2024.",
21 ``Employee count reached 500 as of October 2024.",
22 ``Customer satisfaction score improved to 4.8/5.0."
23],
24 metadatas=[
25 {"source": ``Q3_report.pdf", ``page": 1},
26 {"source": ``product_roadmap.pdf", ``page": 3},
27 {"source": ``HR_report.pdf", ``page": 2},
28 {"source": ``customer_survey.pdf", ``page": 1}
29],
30 ids=["doc1", ``doc2", ``doc3", ``doc4"]
31)

RAG with Citations

1 # Query
2 query = ``What was the revenue in Q3 2024?"
3
4 # Retrieve with metadata
5 results = collection.query(query_texts=[query], n_results=2)
6 retrieved_docs = results['documents'][0]
7 sources = results['metadatas'][0]
8
9 # Build context with citations

10 context = ``\n".join([
11 f"{doc} (Source: {src['source']})"
12 for doc, src in zip(retrieved_docs, sources)
13])
14
15 prompt = f"""Answer based on context and cite sources.
16
17 Context:
18 {context}
19
20 Question: {query}"""
21
22 # Generate with citations
23 result = llm(prompt, max_new_tokens=100)
24 # Output: ``Q3 2024 revenue was $50M, up 20% from Q2
25 # (Source: Q3_report.pdf)"

Advantage: User can verify information by checking original source!

The Hidden Costs and Dangers of Fine-Tuning

We’ve seen powerful techniques for adapting LLMs without touching
parameters
But why should we prefer these methods over fine-tuning?
Six Major Reasons to Hesitate:

1 Catastrophic Forgetting
2 The Alignment Tax
3 Compromised Safety Guardrails
4 Expertise and Scale Required
5 Maintenance and Update Complexity
6 Models Are Optimized by Labs with Expertise

Let’s examine each in detail...

Reason 1: Catastrophic Forgetting
Definition: When fine-tuned on a new task, the model often loses proficiency
on previously learned tasks:

[Kirkpatrick et al. (2017), “Overcoming catastrophic forgetting in neural networks.”]

Gradient updates shift weights to optimize for new task, moving away from
pre-trained optima.
Example: Fine-tune on legal docs → improves legal reasoning BUT may lose
creative writing, code generation, multilingual capabilities

Before Fine-Tuning

General
Knowledge

- Chat
- Code
- Math

- Languages

After Fine-Tuning

Legal
Domain

Lost!

Fine-tune

ICL and RAG preserve the original model’s versatility

Reason 2: The Alignment Tax
Definition: The process of aligning an LLM with human preferences (via
RLHF, DPO) can lead to degradation in the model’s performance on
standard benchmarks. This is a multi-objective optimization problem:

Alignment optimizes for a preference/safety objective (Lalign), a different
goal than the capability objective (Lbenchmark).

Example: Standard RLHF fine-tuning (PPO) caused "performance
regressions compared to GPT-3 on certain public NLP datasets" [Ouyang et
al., 2022]:

[Ouyang et al. (2022), InstructGPT]

Optimizing for academic benchmarks (the FLAN and T0 models) hurts
alignment. This proves the objectives are in tension.
Alignment tax was solved by the PPO-ptx model, which mixes in
pre-training gradients back and achieves the highest alignment score.

Reason 3: Compromised Safety Guardrails
Fine-tuning can easily and systematically dismantle safety guardrails that
prevent harmful outputs (Qi et al. 2023):

Fine-tuning on as few as 10 harmful examples can “jailbreak” models
Even fine-tuning on benign datasets can unintentionally degrade safety

[Qi et al. (2023), “Fine-tuning Aligned Language Models Compromises Safety.”]

Mechanism: Safety alignment creates a "thin crust" of refusal behavior.
Fine-tuning doesn’t teach new harmful skills; it pierces this crust by shifting
the weights, re-exposing the latent harmful capabilities learned during
pre-training.
Contrast with RAG/ICL: These methods do not modify parameters, so
they do not interfere with core safety alignment

Reason 4: Expertise and Scale Required
Challenge 1: Computational Cost

Full fine-tuning of 270M model: Requires moderate GPU (RTX
3090/4090)
Training time: Minutes to hours depending on dataset size
Cost: $10s to $100s per training run
Note: While more accessible than large models, still requires setup

Challenge 2: Data Requirements

Need high-quality, labeled dataset
Typical: 1000s to 10,000s of examples for small models
Manual annotation by domain experts: $10,000+ for complex domains

Challenge 3: Technical Expertise

Requires ML/NLP expertise
Hyperparameter tuning (learning rate, batch size, epochs)
This is a complex debugging process, not just ‘model.fit()‘.
Risk of overfitting or misalignment if done incorrectly

Contrast: Prompt engineering and RAG require software engineering and
data management skills—lower barrier to entry

Reason 5: Maintenance and Update Complexity
Fine-tuning creates a fork:

Creates a new model instance specific to your task
When base model is updated (bug fixes, improvements), your fine-tuned
version doesn’t automatically benefit
Must re-fine-tune on new base model to incorporate improvements
Versioning and deployment complexity increases

Engineering Principle: Decoupled vs. Monolithic Architecture:

RAG/Prompting is a decoupled system: Knowledge (the DB) and Logic
(the LLM) are separate. You can update one without breaking the other.
Fine-Tuning is a monolithic system: Knowledge and Logic are baked
together. Any update requires a full rebuild.

RAG/Prompting advantage:

Can upgrade to newer/better base model effortlessly
Just plug the new model into your RAG pipeline
Immediately benefit from model improvements

Reason 6: Models Are Optimized by Labs with Expertise

Trust the Experts
State-of-the-art LLMs like Gemma 3 are the result of:

Years of research and engineering
Billions of dollars in compute
Careful optimization by world-class ML teams (Google DeepMind)
Extensive safety alignment and red-teaming
Training on 6 trillion tokens for Gemma 3 270M

Risk: By modifying weights without the same level of rigor, you may:

Deteriorate overall performance
Violate safety alignment
Introduce unexpected behaviors

Principle: This is the "humility argument". You are trying to "improve" a
system built by 1,000 PhDs with $100M in compute by running a $50
training job on a single GPU. Be cautious and respectful of the complexity.
ICL/RAG: Leverage the experts’ work without risking degradation

The Stepwise Approach
Always try less invasive methods first!: Do not proceed to the next step
until you have proven the current one is insufficient.
Recommended Progression:
Step 1: Zero-shot Prompting

Try the simplest approach first
Evaluate: Good enough? → Done!

Step 2: Few-shot Prompting + CoT

Add examples and reasoning chains
Evaluate: Good enough? → Done!

Step 3: RAG (if knowledge gap exists)

Add external knowledge retrieval
Evaluate: Good enough? → Done!

Step 4: PEFT (last resort)

Only if prompting + RAG insufficient
Use parameter-efficient methods (will be discussed next..)

Comparative Analysis

Dimension Prompting/ICL RAG Fine-Tuning

Goal Task guidance Knowledge injection Behavior change
Data freshness N/A Excellent Poor
Hallucination Moderate Low Moderate-Low
Transparency High High Low
Safety risk None None High
Forgetting None None High
Cost Very low Low-Moderate Moderate
Expertise Low Moderate High
Latency Low Moderate Low
Maintenance Easy Easy Moderate

Key Heuristic: Knowledge vs. Behavior
Use RAG for KNOWLEDGE: When the model doesn’t know
something (e.g., recent data, private docs).
Use Fine-Tuning for BEHAVIOR: When the model knows the
information but won’t say it the way you want (e.g., needs a specific
persona, style, or output format like JSON).

Further Reading
In-Context Learning:

Brown et al. (2020). “Language Models are Few-Shot Learners”
Wei et al. (2022). “Emergent Abilities of Large Language Models”

Prompt Engineering:

Wei et al. (2022). “Chain-of-Thought Prompting Elicits Reasoning”
Kojima et al. (2022). “Large Language Models are Zero-Shot Reasoners”
Wang et al. (2022). “Self-Consistency Improves Chain of Thought”

Retrieval-Augmented Generation:

Lewis et al. (2020). “Retrieval-Augmented Generation for Knowledge-Intensive NLP”
Gao et al. (2023). “Retrieval-Augmented Generation for LLMs: A Survey”

Fine-Tuning Risks:

Qi et al. (2023). “Fine-tuning Aligned Language Models Compromises Safety”
Kirkpatrick et al. (2017). “Overcoming Catastrophic Forgetting”

Gemma 3 Resources:

Google (2024). “Gemma 3 Model Card and Technical Report”
Google Developers Blog (2024). “Introducing Gemma 3 270M”

Next: Parameter-Efficient Fine-Tuning (PEFT)

	The Adaptation Challenge
	In-Context Learning
	Prompt Engineering
	Retrieval-Augmented Generation
	Why Hesitate to Fine-Tune?
	Decision Framework

