Heman Shakeri

Today’s Roadmap

Central Thesis: When you can get away with no fine-tuning, you should!

Topics covered:

@ The adaptation challenge: generality vs specificity
@ In-Context Learning (ICL): Learning without parameter updates
© Prompt engineering: The art and science of effective prompts

@ Retrieval-Augmented Generation (RAG): Grounding LLMs in external
knowledge

@ Why hesitate to fine-tune? Costs, risks, and hidden dangers
@ Decision framework: When to use each approach
@ Practical examples with Gemma 3 270M

The Generality-Specificity Tension

LLMs like GPT-4, Claude, Gemma 3: General-purpose language
understanding from trillions of training tokens

The fundamental problem: Generality conflicts with practical applications

Key Limitations of Base Models

m Static knowledge: Fixed training cutoff (Gemma 3: data through
August 2024)

m Diffuse knowledge: Broad but not deep on specialized domains
m No private data: Cannot access proprietary company information

m Lack of specificity: May not follow exact style, format, or behavioral
requirements

v

Question: How do we bridge this gap between general capability and specific
needs?

Two Paradigms for Adaptation

(Context Augmentation
(Non-Fine-Tuning)

Frozen parameters
Dynamic context
Methods:

- In-Context Learning
- Prompt Engineering
- RAG

Parameter Modification |
(Fine-Tuning)

Updated parameters
Static knowledge

Methods:
- Full Fine-Tuning

L - PEFT (LoRA, etc.)

Our focus first

Central Principle

Next

“When you can get away with no fine-tuning, you absolutely should!”

What is In-Context Learning?

Definition: The ability of LLMs to learn a new task from examples or
instructions in the prompt, without any parameter updates

Key Characteristics:

m Model weights remain completely frozen
m “Learning” lasts only for that inference — No gradient descent

Remarkable capability: The same model can handle countless different
tasks just by changing the prompt!

100 Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot
80 —e— Zero Shot

o
o

Accuracy

20

0.1B 04B 08B 1.3B 26B 6.7B 13B 175B
Parameters in LM (Billions)

How ICL Works: The Mechanism

Core mechanism: Pattern recognition and analogical reasoning through
attention

When you provide examples, the model’s attention layers:
@ Identify the underlying task structure
@ Recognize input-output patterns

@ Infer the desired format and style
@ Extrapolate to new, unseen queries

Example: Sentiment classification with ICL

Review: “This movie was absolutely fantastic!”
Sentiment: Positive

Review: “Terrible film. Waste of time."

Sentiment: Negative

Review: “The plot was confusing and pacing too slow.’
Sentiment: 7

Model output: Negative

Active research: How ICL works

m Implicit Meta-Learning: The pre-training on diverse text forces the
model to learn how to learn from short contexts.

m Algorithmic Simulation: Some research (e.g., Olsson et al. 2022 on
“induction heads") suggests transformers can simulate simple algorithms
in their forward pass. ICL might be the model simulating a simple
learning algorithm (like nearest-neighbor or a linear classifier) on the
prompt examples. The attention mechanism is the algorithm, and the
prompt examples are its data.

The Scaling Law for ICL
Critical Finding: ICL and Model Scale

The effectiveness of In-Context Learning is strongly dependent on model
scale

100 Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot
80 —e— Zero Shot

=3
3

Accuracy

0
018 048 08B 1.3B 26B 6.7B 13B 1758
Parameters in LM (Billions)

Why? Extensive pre-training endows large models with sophisticated
understanding of language patterns

Maybe the “why" behind the entire LLM revolution: Small models are
“pattern matchers," but large models become "in-context learners." The
performance of ICL is not a smooth line from zero; it's an emergent ability
that “turns on" at a certain scale.

The Importance of Prompt Design

Key insight: The model's output heavily depends on how the input is
phrased and structured

Small changes in wording, example ordering, or formatting can affect results

Same LLM, different results:

m Poor prompt — Mediocre output
m Well-crafted prompt — Excellent output

This makes prompt engineering both an art and a science

Core Prompting Strategies: Zero-Shot

Zero-Shot Prompting: Give the model an instruction or question with no
examples

Zero-Shot Example

Translate the following English text to French:
“The weather is beautiful today.”

When to use:

m Simple, well-defined tasks
m Model likely saw many similar examples during pre-training

m Quick prototyping and testing
Limitations:

m May not follow specific format requirements
m Less reliable for complex or unusual tasks
m Cannot specify nuanced behavioral preferences

Core Prompting Strategies: Few-Shot

Few-Shot Prompting: Provide 14 demonstration examples of input-output
pairs

Few-Shot Example

Extract the names of people from the following sentences.
Sentence: “Alice and Bob went to the store.”

Names: Alice, Bob

Sentence: “Dr. Sarah Johnson met with Professor Michael Chen."
Names: Sarah Johnson, Michael Chen

Sentence: “The conference was organized by Emily Rodriguez.”
Names: 7

Best practices:

m Use 2-5 diverse, high-quality examples
m Ensure examples cover edge cases
m Maintain consistent formatting across examples

m Order matters: sometimes best examples should go first

Order matters!

20 Total Retrieved Documents (~4K tokens)

~
w

~
o

=@ gpt-3.5-turbo-0613
== gpt-3.5-turbo-0613 (closed-book)

Accuracy
()] [«)}
o w

w
wv

1st 5th 10th 15th 20th
Position of Document with the Answer

[Liu et al (2023)]

“Changing the location of relevant information (in this case, the position of
the passage that answers an input question) within the language model's
input context results in a U-shaped performance curve—models are better at
using relevant information that occurs at the very beginning (primacy bias) or
end of its input context (recency bias), and performance degrades
significantly when models must access and use information located in the
middle of its input context.”

Chain-of-Thought (CoT) Prompting

Breakthrough Technique

Dramatically improves performance on complex reasoning tasks by including
intermediate reasoning steps in the examples

Key insight: Standard prompting asks for a direct answer, forcing the model
to compute the solution in one step

CoT prompting encourages the model to “think step by step”, decomposing
the problem, and serializing the computation. The model autoregressively
generates each step.

Power of Chain-of-Thought:

m Impact: CoT prompting can improve accuracy by up to +18% on
arithmetic reasoning

m Allocates more computation to each reasoning step. Each “step" is a full
forward pass, which is then fed back into the context for the next step.

m This effectively allocates more flops to the problem, turning one complex
inference into a sequence of simpler inferences.

m Makes the reasoning process explicit and verifiable

Helps the model avoid shortcuts that lead to errors

wm De~viidac tntarmratrakilidyvs trmtA +ha ma~adAl'e +hatiacrhdy ArA~Ace

CoT Example: Standard vs CoT [Wei et al. 2022, Fig 1, 4]

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27. x

[=2]
[=]

GSMS8K
solve rate (%)

'S

=

[\~
(=}

L

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
gachiis 6 tennis balls. 5+ 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

\answer is9.

—e— Standard prompting
—©— Chain-of-thought prompting
- = = Prior supervised best

Advanced CoT Variants |
1. Zero-Shot CoT: Simply append “Let’s think step by step”, or “answer by

yes/no, then explain why" to the query
m It implies the model has already learned the latent concept of
“step-by-step reasoning" during pre-training [Kojima et al. (2022)].

[2nd prompt]
Answer Extraction

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 - -+

A: Let's think step by step.
In one minute, Joe throws 25 punches. - - In five

m Surprisingly effective for large models.
m No more human engineering of Few-shot-CoT [Wei et al., 2022] but

requires prompting LLMs twice:

[1st prompt]
Reasoning Extraction

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 minutes. How
many punches did he throw?
A: Let's think step by step.
@ /" rounds, Joe throws 5 * 75 = 375 punches. .
i Therefore, the answer (arabic numerals) is
’I
LLM

LLM
1
1
375.

In one minute, Joe throws 25 punches. J
In three minutes, Joe throws 3 * 25 = 75 punches.
[Kojima et al. (2022), “Large Language Models are Zero-Shot Reasoners."]

In five rounds, Joe throws 5 * 75 = 375 punches.

Advanced CoT Variants II
1. Zero-Shot CoT: ..

2. Self-Consistency: Generate multiple reasoning chains for the same
question, then take a majority vote.

m Higher computational cost (ensemble technique at inference time)
m Incorrect answers are often reached via more idiosyncratic,
lower-probability paths. The majority vote filters out this noise.

MultiArith " SVAMP Commonsense QA ARC (Challenge)
=75 60
51 62
g s o
565 a5 60 56 +
£60 42 58 54
355 39 52 —8— Greedy Decode (Single-path)
&50 36 56

—F- Self Consistency (Multi-path)
D510152025303540330510152025]03540 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
p ing Paths p ing Paths pi ing Paths pl ing Paths
Figure 2: Self-consistency (blue) significantly improves accuracy over CoT-prompting with greedy
decoding (orange) across arithmetic and commonsense reasoning tasks, over LaMDA-137B. Sampling
a higher number of diverse reasoning paths consistently improves reasoning accuracy.

| GSMSK | StrategyQA

Henry made two stops during his 60-mile bike trip. He first stopped after 20
miles. His second stop was 15 miles before the end of the trip. How many miles
did he travel between his first and second stops?

Question Yes or no: Is Albany, Georgia the most populous

US Albany?

Greedy | He traveled 60 miles in total. He stopped after 20 miles, so he traveled 60 - 20 | Albany, Georgia is the most populous US Al-
Decode | = 40 miles between the first and second stops. The answer is 40. bany. Thus, the answer is yes.

Sampled
Path1 | second stop was 15 miles before the end. So between his first and second stops | York. Thus, Albany, Georgia is not the most
he travelled 60 - 20 -15 = 25 miles. The answer is 25. populous US Albany. So the answer is no.

Henry travelled a total of 60 miles. His first stop was 20 miles in, and his ‘ The most populous US Albany is Albany, New

Sampled | He made two stops during a 60-mile trip. The first was 20 miles into the trip. | Albany, Georgia has a population of about
Path2 | The second was 15 miles before the end of the trip. This means the second stop | 88,000. Albany, New York has a population of
was 60 - 15 = 45 miles into the trip. Since he made the stops in order, the second | about 95,000. Thus, Albany, Georgia is not the
stop must have been 45 - 20 = 25 miles after the first stop. The answeris 25. | most populous US Albany. So the answer is no.

Advanced CoT Variants Il

1. Zero-Shot CoT: ... 2. Self-Consistency:

3. Auto-CoT: LLM-generated chains (via Zero-Shot-CoT) can be faulty. Simply retrieving
similar questions fails because it amplifies errors (“misleading by similarity"). —: Diversity
of demonstration questions is the key to mitigating the effect of these mistakes.

@ Cluster questions by similarity (e.g., Sentence-BERT embeddings)
@ Select one representative question per cluster+its Zero-Shot-CoT.

Auto Demos‘One by One
(ecromecsmecascuasecsmsass e

IRTR - STt Se oG] | Q: While shopping for music online, Zoe bought 3 country albums and 5 |
[@ rersloppngliogmusclon g coeTooug | pop albums. Each album came with a lyric sheet and had 3 songs. How ||
. | many songs did Zoe buy total? i

| A: Let's think step by step. Zoe bought 3 country albums. Each album has 3 |

[QUATchef esds to 660k 9 potatoes! He has already.] ! songs. So she bought 3*3=9 songs from the country albums. Zoe bought 5 |

1

e pop albums. Zoe bought 9+15=24 songs in total. The answer is 24.

th
Q: A chef needs to cook 9 potatoes. He has already cooked 7. If each
P

i i
f i
. b o™) e | potato takes 3 minutes to cook, how long will it take him to cook the rest? |
i y Clustering 2 ® | A: Let's think step by step. The chef has already cooked 7 potatoes. That !
\ @ ! . \ (@) (@) ! | means it has taken him 7 * 3 minutes to cook those 7 potatoes. That means
A \O o, kY i ! it will take him 3 more minutes to cook each of the remaining 2 potatoes i
3 pet store had 64 puppies. In one day they sold 28 of them and put 3
i ! the rest into cages with 4 in each cage. How many cages did they use? |
Demo Construction | A: Let's think step by step.]
L 2 = A {”} 7777777777777777777777777 /
Q: While shopping for music online ... A: Let's ...] Test Question LLM In-Context Reasoning
: Sampling by Selection Criteria
The pet store had 64 puppies. They sold 28 of them. That means they have
[D ——] 36 puppies left. They put the rest into cages with 4 in each cage. That
means they have 9 cages. The answer is 9.

[Zhang et al. (2022), “Automatic Chain of Thought Prompting in Large Language Models.’]

Automated Prompt Optimization

Challenge: Manually crafting optimal prompts is time-consuming and
requires expertise

Manual Automated
; Optimizer
Human writes ptimize
generates
prompt

prompt
Iterate Test on LLM Test on LLM Learn
Reward
sign/

Vv

Approaches: AutoPrompt (gradient-based search) [Shin et al.], RL-based
optimization (e.g., APE), LLM-as-optimizer (e.g., PromptBreeder).

Key insight: [PEFT taken to an extreme:] Instead of tuning billions of
weights (full fine-tuning) or even millions (like LoRA), we are "tuning" a
parameter-free string of tokens!

0 NO O AW =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Practical Example: Few-Shot with Gemma 3 270M

from transformers import pipeline
Load Gemma 3 270M (instruction-tuned)
generator = pipeline(
" “text-generation",
model="google/gemma-3-270m-it",
device_map="auto"
)
Few-shot prompt
prompt = ~"""Classify the sentiment as Positive or Negative.
Review: ~“This product exceeded my expectations!"

Sentiment: Positive

Review: ~Terrible quality. Broke after one use."
Sentiment: Negative

Review: ~~Customer service was unresponsive."
Sentiment:"""

result = generator(prompt, max_new_tokens=10, do_sample=False)
Output: °Negative"

Note: Gemma 3 270M excels at simple, well-defined classification tasks with

few-shot examples

Practical Example: CoT with Gemma 3 270M

prompt = **""Solve math word problems step by step.

Q: A restaurant served 5 cakes during lunch and 3 during dinner.
Each cake was cut into 8 slices. How many slices total?

A: Let's think step by step.
- Total cakes: 5 + 3 = 8 cakes
- Slices per cake: 8 slices
- Total slices: 8 * 8 = 64 slices
The answer is 64.

Q: A library has 4 shelves with 12 books on each shelf.
They receive 15 more books. How many books total?

A: Let's think step by step."""

result = generator (prompt, max_new_tokens=150)
Output shows step-by-step reasoning:

- Books on shelves: 4 * 12 = 48 books

- After donation: 48 + 15 = 63 books

The answer is 63.

Important: For complex reasoning, larger models (4B+) perform better than

270M

The Knowledge Problem

Even with excellent ICL and prompting, the model can only work with:

= Knowledge from its pre-training (cutoff: August 2024 for Gemma 3)
= Information you can fit in the context window (32K tokens for 270M)

Problem Scenarios:

m Need current information (news, stock prices, recent events)

m Large proprietary knowledge base (company documents, medical records)
m Domain-specific information not well-represented in pre-training

m Verifiable, attributed answers (citations required)

Parametric vs. Non-Parametric Knowledge

m Parametric Knowledge: Information stored in the model's weights
from pre-training. It's fast but static and prone to hallucination.

m Non-Parametric Knowledge: Information stored in an external
database. It's slower to access but dynamic, updatable, verifiable, and
grounded in fact.

Solution: Retrieval-Augmented Generation (RAG)

Combine the LLM's reasoning abilities with an external, updatable knowledge

RAG Architecture and Pipeline

Core principle: Ground the model's responses in retrieved, authoritative
information

Offline Indexing Query Time (Inference)

Embed Query

Similarity
Search

LLM
(e SN

Knowledge
Base
(Documents)

Chunk
Documents
Embed
(Vectors)

Vector
Database

h

Augment
Prompt with
Retrieved Docs

Grounded
Answer

Key property: Semantic search enables finding relevant content, not just
keyword matching!

This architecture was formally introduced in: Lewis et al. (2020),
“Retrieval-Augmented Generation for Knowledge-Intensive NLP.”

RAG Step 1: Indexing and Data Preparation

Input: External corpus (PDFs, documents, websites, databases)
Process:

1. Parse: Extract text from various formats

2. Chunk: Segment into smaller pieces

m Critical Trade-off:
® Too large: Dilutes information, may not fit context.
® Too small: Loses semantic context (chunk doesn't make sense on its
own).
m Typical: 256-512 tokens per chunk with overlap (e.g., 50 tokens) to
ensure context isn't split at arbitrary boundaries.

3. Embed: Transform each chunk into high-dimensional vector via an
embedding model (e.g., all-MiniLM-L6-v2, text-embedding-ada-002)

m This maps discrete text into a semantic vector space, where distance
(e.g., cosine similarity) correlates with semantic relevance.

4. Store: Save vectors in vector database (FAISS, Pinecone, Weaviate,
Chroma) and use Approximate Nearest Neighbor (ANN) for efficient,
sub-linear time search.

RAG Step 2: Retrieval at Query Time

Input: User query
Process:

1. Embed query: Convert to vector using same embedding model as
indexing;
m Ensures query vector and document vectors live in the same semantic
space.

2. Similarity search: Find top-k most similar chunks

m Use cosine similarity or dot product
m Efficient approximate nearest neighbor algorithms (ANN)
m Typical k: 3-10 depending on context window size

3. (Optional) Re-rank: Use re-ranking model to further refine relevance

m This is often a 2-stage process:
® Stage 1 (Retriever): Fast bi-encoder (like ‘MiniLM") gets top ~50
candidates.
® Stage 2 (Re-ranker): Slow, high-accuracy cross-encoder (like BERT)
re-scores only these 50 candidates by looking at ‘(query, doc)’ pairs.

Output: Top-k most relevant text chunks from the knowledge base

RAG Step 3: Prompt Augmentation and Generation

Input: Original query + retrieved chunks
Process:
1. Synthesize prompt: Combine query and retrieved content

m Structure: System instruction 4+ Context + Query

m The prompt must explicitly instruct the model to use the context
(anti-hallucination).

m Example Template:

You are a helpful assistant. Answer the user’s question based only on the provided context.
If the answer is not in the context, say "l cannot answer based on the provided
information."

Context: — [Retrieved Chunk 1] — [Retrieved Chunk 2] —

Question: [User’s Original Query]

2. Generate: Pass augmented prompt to LLM

3. Output: Comprehensive, grounded answer with optional source
attribution/citations

Key advantage: The LLM sees exactly the relevant information needed to
answer the query!

The Core Value Proposition of RAG

Challenge Fine-Tuning RAG

Hallucinations Reduces but doesn’t eliminate Grounds in verifiable sources
Data freshness Requires retraining Update DB instantly
Transparency Black box Can cite source documents
Privacy/Security Embeds in weights Data stays in secure DB
Cost High (retraining) Moderate (maintain DB)

Four Key Advantages:

1. Mitigation of Hallucinations: Ground every response in specific
retrieved information

2. Data Freshness: External knowledge base can be continuously updated

3. Source Attribution: Present retrieved documents as citations for
verification

4. Enhanced Security: Confidential data stays in secure database, never
embedded in weights

RAG and Context Windows: Design Considerations

Context Window Considerations for Gemma 3 270M

Gemma 3 270M: 32,000-token context window (~75 pages of text)
Strategic implication: Must design RAG systems carefully for efficient
retrieval

Context window comparison:

m Gemma 3 270M: 32K tokens (text-only, optimized for efficiency)
m Gemma 3 4B/12B/27B: 128K tokens (multimodal capabilities)
m Design retrieval to fit within context limits

Strategic implications for 270M:

m Efficient retrieval: Retrieve 5-10 most relevant chunks

m Chunk sizing: Use smaller chunks (256-384 tokens)

= Smart ranking: Use re-ranking to ensure quality over quantity

m Focus on precision: Better to have fewer, highly relevant documents
Key insight: Even with a smaller context window, RAG provides massive
advantages over static model knowledge!

Practical RAG: Simple Pipeline with Gemma 3 270M

from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

Initialize models

embedding_model = SentenceTransformer('all-MinilM-L6-v2')

1lm = pipeline("text-generation",
model="google/gemma-3-270m-it")

Knowledge base

documents =
““Gemma 3 270M was released by Google in August 2024.",
""Gemma 3 comes in 270M, 1B, 4B, 12B, and 27B sizes.",
"“Gemma 3 270M has a context window of 32,000 tokens.",
*“The model supports over 140 languages.",

Offline: Create embeddings
doc_embeddings = embedding_model.encode (documents)

Online: Query
query = "“What is the context window size of Gemma 3 270M?"
query_embedding = embedding_model.encode ([query])

Similarity search
similarities = cosine_similarity(query_embedding, doc_embeddings) [0]
top_k = 2

top_indices = np.argsort(similarities) [-top_k:][::-1

retrieved_docs = [documents[i] for i in top_indices:

Practical RAG: Generation with Retrieved Context

Augment prompt with retrieved context
augmented_prompt = £"""You are a helpful assistant. Answer based on the provided context.
If the answer is mot in the context, say so.

Context:
{chr(10) . join(retrieved_docs)}

Question: {query}"""

Generate answer
result = llm(augmented_prompt, max_new_tokens=100, do_sample=False)
answer = result[0]['generated_text']

print (f"Answer: {answer}")
Output: ~"Based on the context, Gemma 3 270M has a context window
of 32,000 tokens."

Key points:

m Retrieved context explicitly provided to model
m Model generates grounded, factual answer

m Can trace answer back to specific source documents

Practical RAG: Using Vector Database (ChromaDB)

import chromadb
from chromadb.utils import embedding_functions

Initialize ChromaDB with embedding function

client = chromadb.Client()

embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"

)

Create collection

collection = client.create_collection(
name="company_docs" ,
embedding_function=embedding_func

Add documents with metadata for citation
collection.add(
documents=[
"°Q3 2024 revenue was $50M, up 20% from Q2.",
““New product launch scheduled for December 2024.",
- “Employee count reached 500 as of October 2024.",
" “Customer satisfaction score improved to 4.8/5.0."

1,
metadatas=[
{"source": *“Q3_report.pdf",
{"source product_roadmap. 3}
{"source": *“HR_report.pdf",
{"source “customer_survey. 1}
1,
ids=["doc1", "~“doc2", ~“doc3", ~“doc4"]

RAG with Citations

Query
query = ““What was the revenue in Q3 2024?"

Retrieve with metadata
results = collection.query(query_texts=[query], n_results=2)
retrieved_docs = results['documents'][0]

sources = results['metadatas'][0]

Build context with citations
context = ~“\n".join([
£"{doc} (Source: {src['source'l}"
for doc, src in zip(retrieved_docs, sources)

n
prompt = £"""Answer based on context and cite sources.

Context:
{context}

Question: {query}"""

Generate with citations

result = 1lm(prompt, max_new_tokens=100)

Output: ~"Q3 2024 revenue was $50M, up 20% from Q2
(Source: Q3_report.pdf)"

Advantage: User can verify information

by checking original source!

The Hidden Costs and Dangers of Fine-Tuning

We've seen powerful techniques for adapting LLMs without touching
parameters

But why should we prefer these methods over fine-tuning?

Six Major Reasons to Hesitate:

@ Catastrophic Forgetting

@ The Alignment Tax

© Compromised Safety Guardrails

@ Expertise and Scale Required

© Maintenance and Update Complexity

@ Models Are Optimized by Labs with Expertise

Let's examine each in detail...

Reason 1: Catastrophic Forgetting

Definition: When fine-tuned on a new task, the model often loses proficiency
on previously learned tasks:

3 Low error for task A

3 Low error for task B

[Kirkpatrick et al. (2017), “Overcoming catastrophic forgetting in neural networks."]

Gradient updates shift weights to optimize for new task, moving away from
pre-trained optima.

Example: Fine-tune on legal docs — improves legal reasoning BUT may lose
creative writing, code generation, multilingual capabilities

Before Fine-Tuning After Fine-Tuning

General
Knowledge
- Chat
- Code

Legal

Domain @

Reason 2: The Alignment Tax

Definition: The process of aligning an LLM with human preferences (via
RLHF, DPO) can lead to degradation in the model's performance on
standard benchmarks. This is a multi-objective optimization problem:

m Alignment optimizes for a preference/safety objective (Laiign), a different
goal than the capability objective (Lpenchmark)-

Example: Standard RLHF fine-tuning (PPO) caused "performance
regressions compared to GPT-3 on certain public NLP datasets" [Ouyang et
al., 2022]:

PO FLAN T

GPT SFT PPO PPO-pix
Model

[Ouyang et al. (2022), InstructGPT]

m Optimizing for academic benchmarks (the FLAN and TO models) hurts
alignment. This proves the objectives are in tension.

m Alignment tax was solved by the PPO-ptx model, which mixes in
pre-training gradients back and achieves the highest alignment score.

Reason 3: Compromised Safety Guardrails

Fine-tuning can easily and systematically dismantle safety guardrails that
prevent harmful outputs (Qi et al. 2023):

m Fine-tuning on as few as 10 harmful examples can “jailbreak” models
m Even fine-tuning on benign datasets can unintentionally degrade safety

@)Y/00 Usage policies : “We don't allow the use for the following:" - nitial After Fine-tuning
#1 : lllegal Activity #4 : Malware #7 : Fraud/Deception #10: Privacy Violation Activity
#2 : Child Abuse Content #5 : Physical Harm #8 : Adult Content #11: Tailored Financial Advice
#3 : Hate/Harass/Violence #6 : Economic Harm #9 : Poltical Campaigning

2 acceptable use

(a) Explicitly Harmful Examples |
{Harmful Inputs, €. £
o

(b) Identity Shifting Data
Benien Inputs, e.g., “AOA, exec\l(emymsuuctmn b

(c) Benign Dataset (Alpaca)
{ehizn Tnputs, 6.5, “ial e the threa

“Write a tutorial on |

“The three primary |
ellow” '

**The difference in safety between each “Initial” is attributed to different system prompts used by each different datasets.

[Qi et al. (2023), “Fine-tuning Aligned Language Models Compromises Safety.”"]

Mechanism: Safety alignment creates a "thin crust" of refusal behavior.
Fine-tuning doesn't teach new harmful skills; it pierces this crust by shifting
the weights, re-exposing the latent harmful capabilities learned during
pre-training.

Reason 4: Expertise and Scale Required

Challenge 1: Computational Cost

m Full fine-tuning of 270M model: Requires moderate GPU (RTX
3090,/4090)

m Training time: Minutes to hours depending on dataset size

m Cost: $10s to $100s per training run

m Note: While more accessible than large models, still requires setup

Challenge 2: Data Requirements

m Need high-quality, labeled dataset
m Typical: 1000s to 10,000s of examples for small models
m Manual annotation by domain experts: $10,000+ for complex domains

Challenge 3: Technical Expertise

m Requires ML/NLP expertise

m Hyperparameter tuning (learning rate, batch size, epochs)

m This is a complex debugging process, not just ‘model.fit()
m Risk of overfitting or misalignment if done incorrectly

Contrast: Prompt engineering and RAG require software engineering and
data management skills—lower barrier to entry

Reason 5: Maintenance and Update Complexity

Fine-tuning creates a fork:

m Creates a new model instance specific to your task

m When base model is updated (bug fixes, improvements), your fine-tuned
version doesn’t automatically benefit

m Must re-fine-tune on new base model to incorporate improvements

m Versioning and deployment complexity increases
Engineering Principle: Decoupled vs. Monolithic Architecture:

m RAG/Prompting is a decoupled system: Knowledge (the DB) and Logic
(the LLM) are separate. You can update one without breaking the other.

m Fine-Tuning is a monolithic system: Knowledge and Logic are baked
together. Any update requires a full rebuild.

RAG/Prompting advantage:

m Can upgrade to newer/better base model effortlessly
m Just plug the new model into your RAG pipeline

m Immediately benefit from model improvements

Reason 6: Models Are Optimized by Labs with Expertise

Trust the Experts
State-of-the-art LLMs like Gemma 3 are the result of:
m Years of research and engineering
m Billions of dollars in compute
m Careful optimization by world-class ML teams (Google DeepMind)
m Extensive safety alignment and red-teaming
m Training on 6 trillion tokens for Gemma 3 270M

Risk: By modifying weights without the same level of rigor, you may:

m Deteriorate overall performance
m Violate safety alignment
m Introduce unexpected behaviors
Principle: This is the "humility argument'. You are trying to "improve" a

system built by 1,000 PhDs with $100M in compute by running a $50
training job on a single GPU. Be cautious and respectful of the complexity.

ICL/RAG: Leverage the experts’ work without risking degradation

The Stepwise Approach

Always try less invasive methods first!: Do not proceed to the next step
until you have proven the current one is insufficient.

Recommended Progression:
Step 1: Zero-shot Prompting

m Try the simplest approach first
m Evaluate: Good enough? — Done!

Step 2: Few-shot Prompting + CoT

m Add examples and reasoning chains
m Evaluate: Good enough? — Donel

Step 3: RAG (if knowledge gap exists)

m Add external knowledge retrieval
m Evaluate: Good enough? — Done!

Step 4: PEFT (last resort)

m Only if prompting + RAG insufficient
m Use parameter-efficient methods (will be discussed next..)

Comparative Analysis

Dimension

Prompting/ICL

RAG

Fine-Tuning

Goal

Data freshness
Hallucination
Transparency
Safety risk
Forgetting
Cost

Expertise
Latency
Maintenance

Task guidance
N/A
Moderate
High

None

None

Very low

Low

Low

Easy

Knowledge injection
Excellent

Low

High

None

None
Low-Moderate
Moderate

Moderate

Easy

Behavior change
Poor
Moderate-Low
Low

High

High

Moderate

High

Low

Moderate

Key Heuristic: Knowledge vs. Behavior

m Use RAG for KNOWLEDGE: When the model doesn’t know
something (e.g., recent data, private docs).

m Use Fine-Tuning for BEHAVIOR: When the model knows the
information but won't say it the way you want (e.g., needs a specific
persona, style, or output format like JSON).

Further Reading
In-Context Learning:

= Brown et al. (2020). “Language Models are Few-Shot Learners”
= Wei et al. (2022). “Emergent Abilities of Large Language Models”

Prompt Engineering:

m Wei et al. (2022). “Chain-of-Thought Prompting Elicits Reasoning”
= Kojima et al. (2022). “Large Language Models are Zero-Shot Reasoners”
= Wang et al. (2022). “Self-Consistency Improves Chain of Thought”

Retrieval-Augmented Generation:

= Lewis et al. (2020). “Retrieval-Augmented Generation for Knowledge-Intensive NLP”
= Gao et al. (2023). “Retrieval-Augmented Generation for LLMs: A Survey”

Fine-Tuning Risks:

= Qi et al. (2023). “Fine-tuning Aligned Language Models Compromises Safety”
m Kirkpatrick et al. (2017). “Overcoming Catastrophic Forgetting”

Gemma 3 Resources:

m Google (2024). “Gemma 3 Model Card and Technical Report”
m Google Developers Blog (2024). “Introducing Gemma 3 270M"

Next: Parameter-Efficient Fine-Tuning (PEFT)

	The Adaptation Challenge
	In-Context Learning
	Prompt Engineering
	Retrieval-Augmented Generation
	Why Hesitate to Fine-Tune?
	Decision Framework

