Deep Learning
Resources
Setup
FAQ
Shakeri Lab
School of Data Science • UVA
Deep Learning
Course Syllabus (PDF)
Access Canvas
1
Introduction to Deep Learning
Foundations
Neural Networks Basics
Perceptrons
History of AI
Explore Module
2
Backpropagation
Foundations
Backpropagation
Gradient Descent
Activations
Explore Module
3
Optimization Foundations & Ablation Methodology
Foundations
Optimizers
LR Schedules
Regularization
Explore Module
4
Convolutional Neural Networks
CNN Architectures
Convolution
Pooling
Vision Models
Explore Module
5
Advanced CNN Architectures
CNN Architectures
ResNet
DenseNet
EfficientNet
Explore Module
6
Encoder Decoder Architectures
Encoder • Decoder
Seq2Seq
Encoder–Decoder
U-Net
Explore Module
7
Recurrent Neural Networks
Sequence Models
RNN Basics
LSTM
GRU
Explore Module
8
Attention Mechanism
Attention
Attention Basics
Q-K-V
Scaled Dot-Product
Explore Module
9
Transformer
Transformers
Self-Attention
Positional Encoding
Transformer
Explore Module
10
Transformer Models in Vision and Text
Transformers
ViT
BERT/T5/GPT
Scaling
Explore Module
11
Prompting, PEFT & Quantization
Modern LLM Stack
Prompting/RAG
PEFT
QLoRA
Explore Module
12
Multimodal Learning & GenAI
Modern LLM Stack
Multimodal
Diffusion
VAE
GAN
Explore Module